ADAM protease inhibition overcomes resistance of breast cancer stem-like cells to γδ T cell immunotherapy
Gamma delta T cells (γδTc) have tremendous anti-tumoral activity, thus γδTc immunotherapy is currently under development for various malignancies. We targeted breast cancer stem-like cells (BCSC), a rare cell population responsible for patient mortality. BCSC were mostly susceptible to γδTc immunoth...
Gespeichert in:
Veröffentlicht in: | Cancer letters 2021-01, Vol.496, p.156-168 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 168 |
---|---|
container_issue | |
container_start_page | 156 |
container_title | Cancer letters |
container_volume | 496 |
creator | Dutta, Indrani Dieters-Castator, Dylan Papatzimas, James W. Medina, Anais Schueler, Julia Derksen, Darren J. Lajoie, Gilles Postovit, Lynne-Marie Siegers, Gabrielle M. |
description | Gamma delta T cells (γδTc) have tremendous anti-tumoral activity, thus γδTc immunotherapy is currently under development for various malignancies. We targeted breast cancer stem-like cells (BCSC), a rare cell population responsible for patient mortality. BCSC were mostly susceptible to γδTc immunotherapy, yet some escaped. The BCSC secretome rendered γδTc hypo-responsive, and resistant BCSC expressed more PD-L1 and anti-apoptotic protein MCL-1 than non-stem-like cells (NSC). BCSC resistance was partially overcome by dMCL1-2, an MCL-1 degrader, or more fully by blocking PD-1 on γδTc. Increased MICA shedding was prevented by the ADAM inhibitor GW280264X, rendering BCSC as sensitive to γδTc cytotoxicity as NSC. Our data show promising potential for γδTc immunotherapy against BCSC while unraveling immune evasion mechanisms exploited by BCSC, which likely also enable their resistance to cytotoxic T and NK cells. Overcoming this resistance, as we have done here, will improve cancer immunotherapy, leading to better cancer patient outcomes.
•Breast cancer stem-like cells (BCSC) use multiple mechanisms to evade γδ T cells.•Blocking PD-1 partially reverses BCSC resistance to γδ T cell cytotoxicity.•Targeting the anti-apoptotic protein MCL-1 increases BCSC sensitivity.•BCSC express lower MICA on the cell surface and shed more MICA than non-BCSC
.•ADAM inhibition prevents MICA shedding, overcoming BCSC resistance to γδTc. |
doi_str_mv | 10.1016/j.canlet.2020.10.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2450649423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304383520305358</els_id><sourcerecordid>2450649423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-7e630088bd46cde1858a3fe3026f1f8326f655181cc2194d73941c901d5bf62c3</originalsourceid><addsrcrecordid>eNp9kc1O3DAQx60KVLa0b1AhS1x6yeLvOJdKKz7aSiAu27OVOBPhJYm3trMSz0Wfg2fC6VIOHDhYoxn_Zjz-_xH6SsmSEqrONktbjz2kJSNsLi0J5R_QguqSFWWlyQFaEE5EwTWXR-hTjBtCiBSl_IiOeL6Q-SzQ_epidYO3wSeoI2A33rnGJedH7HcQrB8g4gDRxVSPFrDvcBMymbCd84BjgqHo3T1gC30fcfL46fHpL17_y7Ebhmn06Q5CvX34jA67uo_w5SUeo99Xl-vzn8X17Y9f56vrwgquUlGC4oRo3bRC2RaolrrmHXDCVEc7zXNQUlJNrWW0Em3JK0FtRWgrm04xy4_Rt_3c_K0_E8RkBhfndeoR_BQNE5IoUQnGM3r6Bt34KYx5u5mqFNVM0EyJPWWDjzFAZ7bBDXV4MJSY2QyzMXszzGzGXM1m5LaTl-FTM0D72vRf_Qx83wOQ1dg5CCZaB1nX1gWwybTevf_CM2xcnTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459618241</pqid></control><display><type>article</type><title>ADAM protease inhibition overcomes resistance of breast cancer stem-like cells to γδ T cell immunotherapy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Dutta, Indrani ; Dieters-Castator, Dylan ; Papatzimas, James W. ; Medina, Anais ; Schueler, Julia ; Derksen, Darren J. ; Lajoie, Gilles ; Postovit, Lynne-Marie ; Siegers, Gabrielle M.</creator><creatorcontrib>Dutta, Indrani ; Dieters-Castator, Dylan ; Papatzimas, James W. ; Medina, Anais ; Schueler, Julia ; Derksen, Darren J. ; Lajoie, Gilles ; Postovit, Lynne-Marie ; Siegers, Gabrielle M.</creatorcontrib><description>Gamma delta T cells (γδTc) have tremendous anti-tumoral activity, thus γδTc immunotherapy is currently under development for various malignancies. We targeted breast cancer stem-like cells (BCSC), a rare cell population responsible for patient mortality. BCSC were mostly susceptible to γδTc immunotherapy, yet some escaped. The BCSC secretome rendered γδTc hypo-responsive, and resistant BCSC expressed more PD-L1 and anti-apoptotic protein MCL-1 than non-stem-like cells (NSC). BCSC resistance was partially overcome by dMCL1-2, an MCL-1 degrader, or more fully by blocking PD-1 on γδTc. Increased MICA shedding was prevented by the ADAM inhibitor GW280264X, rendering BCSC as sensitive to γδTc cytotoxicity as NSC. Our data show promising potential for γδTc immunotherapy against BCSC while unraveling immune evasion mechanisms exploited by BCSC, which likely also enable their resistance to cytotoxic T and NK cells. Overcoming this resistance, as we have done here, will improve cancer immunotherapy, leading to better cancer patient outcomes.
•Breast cancer stem-like cells (BCSC) use multiple mechanisms to evade γδ T cells.•Blocking PD-1 partially reverses BCSC resistance to γδ T cell cytotoxicity.•Targeting the anti-apoptotic protein MCL-1 increases BCSC sensitivity.•BCSC express lower MICA on the cell surface and shed more MICA than non-BCSC
.•ADAM inhibition prevents MICA shedding, overcoming BCSC resistance to γδTc.</description><identifier>ISSN: 0304-3835</identifier><identifier>EISSN: 1872-7980</identifier><identifier>DOI: 10.1016/j.canlet.2020.10.013</identifier><identifier>PMID: 33045304</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>ADAM Proteins - antagonists & inhibitors ; Animals ; Antibodies ; Antigens ; Apoptosis ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; Breast cancer ; Breast cancer stem cells ; Breast Neoplasms - drug therapy ; Breast Neoplasms - immunology ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Cancer immunotherapy ; Cell Proliferation ; Cytokines ; Cytotoxicity ; Drug Resistance, Neoplasm - drug effects ; Ethics ; Female ; Gamma delta T cells ; Gene Expression Regulation, Neoplastic - drug effects ; Humans ; Immune evasion ; Immunotherapy ; Intraepithelial Lymphocytes - drug effects ; Intraepithelial Lymphocytes - immunology ; Killer Cells, Natural - drug effects ; Killer Cells, Natural - immunology ; Ligands ; Lungs ; Lymphocytes ; Lymphocytes T ; Mcl-1 protein ; Metastasis ; MICA ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Molecular Targeted Therapy ; Mortality ; Neoplastic Stem Cells - drug effects ; Neoplastic Stem Cells - immunology ; Neoplastic Stem Cells - metabolism ; Neoplastic Stem Cells - pathology ; PD-1 ; PD-1 protein ; PD-L1 protein ; Protease Inhibitors - pharmacology ; Secretome ; Tumor Cells, Cultured ; Xenograft Model Antitumor Assays</subject><ispartof>Cancer letters, 2021-01, Vol.496, p.156-168</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>2020. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-7e630088bd46cde1858a3fe3026f1f8326f655181cc2194d73941c901d5bf62c3</citedby><cites>FETCH-LOGICAL-c436t-7e630088bd46cde1858a3fe3026f1f8326f655181cc2194d73941c901d5bf62c3</cites><orcidid>0000-0003-3522-455X ; 0000-0001-8960-422X ; 0000-0003-1984-7343 ; 0000-0003-2154-0279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.canlet.2020.10.013$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33045304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutta, Indrani</creatorcontrib><creatorcontrib>Dieters-Castator, Dylan</creatorcontrib><creatorcontrib>Papatzimas, James W.</creatorcontrib><creatorcontrib>Medina, Anais</creatorcontrib><creatorcontrib>Schueler, Julia</creatorcontrib><creatorcontrib>Derksen, Darren J.</creatorcontrib><creatorcontrib>Lajoie, Gilles</creatorcontrib><creatorcontrib>Postovit, Lynne-Marie</creatorcontrib><creatorcontrib>Siegers, Gabrielle M.</creatorcontrib><title>ADAM protease inhibition overcomes resistance of breast cancer stem-like cells to γδ T cell immunotherapy</title><title>Cancer letters</title><addtitle>Cancer Lett</addtitle><description>Gamma delta T cells (γδTc) have tremendous anti-tumoral activity, thus γδTc immunotherapy is currently under development for various malignancies. We targeted breast cancer stem-like cells (BCSC), a rare cell population responsible for patient mortality. BCSC were mostly susceptible to γδTc immunotherapy, yet some escaped. The BCSC secretome rendered γδTc hypo-responsive, and resistant BCSC expressed more PD-L1 and anti-apoptotic protein MCL-1 than non-stem-like cells (NSC). BCSC resistance was partially overcome by dMCL1-2, an MCL-1 degrader, or more fully by blocking PD-1 on γδTc. Increased MICA shedding was prevented by the ADAM inhibitor GW280264X, rendering BCSC as sensitive to γδTc cytotoxicity as NSC. Our data show promising potential for γδTc immunotherapy against BCSC while unraveling immune evasion mechanisms exploited by BCSC, which likely also enable their resistance to cytotoxic T and NK cells. Overcoming this resistance, as we have done here, will improve cancer immunotherapy, leading to better cancer patient outcomes.
•Breast cancer stem-like cells (BCSC) use multiple mechanisms to evade γδ T cells.•Blocking PD-1 partially reverses BCSC resistance to γδ T cell cytotoxicity.•Targeting the anti-apoptotic protein MCL-1 increases BCSC sensitivity.•BCSC express lower MICA on the cell surface and shed more MICA than non-BCSC
.•ADAM inhibition prevents MICA shedding, overcoming BCSC resistance to γδTc.</description><subject>ADAM Proteins - antagonists & inhibitors</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>Apoptosis</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Breast cancer</subject><subject>Breast cancer stem cells</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - immunology</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer immunotherapy</subject><subject>Cell Proliferation</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Ethics</subject><subject>Female</subject><subject>Gamma delta T cells</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Humans</subject><subject>Immune evasion</subject><subject>Immunotherapy</subject><subject>Intraepithelial Lymphocytes - drug effects</subject><subject>Intraepithelial Lymphocytes - immunology</subject><subject>Killer Cells, Natural - drug effects</subject><subject>Killer Cells, Natural - immunology</subject><subject>Ligands</subject><subject>Lungs</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mcl-1 protein</subject><subject>Metastasis</subject><subject>MICA</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Molecular Targeted Therapy</subject><subject>Mortality</subject><subject>Neoplastic Stem Cells - drug effects</subject><subject>Neoplastic Stem Cells - immunology</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>PD-1</subject><subject>PD-1 protein</subject><subject>PD-L1 protein</subject><subject>Protease Inhibitors - pharmacology</subject><subject>Secretome</subject><subject>Tumor Cells, Cultured</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0304-3835</issn><issn>1872-7980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1O3DAQx60KVLa0b1AhS1x6yeLvOJdKKz7aSiAu27OVOBPhJYm3trMSz0Wfg2fC6VIOHDhYoxn_Zjz-_xH6SsmSEqrONktbjz2kJSNsLi0J5R_QguqSFWWlyQFaEE5EwTWXR-hTjBtCiBSl_IiOeL6Q-SzQ_epidYO3wSeoI2A33rnGJedH7HcQrB8g4gDRxVSPFrDvcBMymbCd84BjgqHo3T1gC30fcfL46fHpL17_y7Ebhmn06Q5CvX34jA67uo_w5SUeo99Xl-vzn8X17Y9f56vrwgquUlGC4oRo3bRC2RaolrrmHXDCVEc7zXNQUlJNrWW0Em3JK0FtRWgrm04xy4_Rt_3c_K0_E8RkBhfndeoR_BQNE5IoUQnGM3r6Bt34KYx5u5mqFNVM0EyJPWWDjzFAZ7bBDXV4MJSY2QyzMXszzGzGXM1m5LaTl-FTM0D72vRf_Qx83wOQ1dg5CCZaB1nX1gWwybTevf_CM2xcnTQ</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Dutta, Indrani</creator><creator>Dieters-Castator, Dylan</creator><creator>Papatzimas, James W.</creator><creator>Medina, Anais</creator><creator>Schueler, Julia</creator><creator>Derksen, Darren J.</creator><creator>Lajoie, Gilles</creator><creator>Postovit, Lynne-Marie</creator><creator>Siegers, Gabrielle M.</creator><general>Elsevier B.V</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3522-455X</orcidid><orcidid>https://orcid.org/0000-0001-8960-422X</orcidid><orcidid>https://orcid.org/0000-0003-1984-7343</orcidid><orcidid>https://orcid.org/0000-0003-2154-0279</orcidid></search><sort><creationdate>20210101</creationdate><title>ADAM protease inhibition overcomes resistance of breast cancer stem-like cells to γδ T cell immunotherapy</title><author>Dutta, Indrani ; Dieters-Castator, Dylan ; Papatzimas, James W. ; Medina, Anais ; Schueler, Julia ; Derksen, Darren J. ; Lajoie, Gilles ; Postovit, Lynne-Marie ; Siegers, Gabrielle M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-7e630088bd46cde1858a3fe3026f1f8326f655181cc2194d73941c901d5bf62c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ADAM Proteins - antagonists & inhibitors</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>Apoptosis</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Breast cancer</topic><topic>Breast cancer stem cells</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - immunology</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer immunotherapy</topic><topic>Cell Proliferation</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Ethics</topic><topic>Female</topic><topic>Gamma delta T cells</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Humans</topic><topic>Immune evasion</topic><topic>Immunotherapy</topic><topic>Intraepithelial Lymphocytes - drug effects</topic><topic>Intraepithelial Lymphocytes - immunology</topic><topic>Killer Cells, Natural - drug effects</topic><topic>Killer Cells, Natural - immunology</topic><topic>Ligands</topic><topic>Lungs</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mcl-1 protein</topic><topic>Metastasis</topic><topic>MICA</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Molecular Targeted Therapy</topic><topic>Mortality</topic><topic>Neoplastic Stem Cells - drug effects</topic><topic>Neoplastic Stem Cells - immunology</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>PD-1</topic><topic>PD-1 protein</topic><topic>PD-L1 protein</topic><topic>Protease Inhibitors - pharmacology</topic><topic>Secretome</topic><topic>Tumor Cells, Cultured</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Indrani</creatorcontrib><creatorcontrib>Dieters-Castator, Dylan</creatorcontrib><creatorcontrib>Papatzimas, James W.</creatorcontrib><creatorcontrib>Medina, Anais</creatorcontrib><creatorcontrib>Schueler, Julia</creatorcontrib><creatorcontrib>Derksen, Darren J.</creatorcontrib><creatorcontrib>Lajoie, Gilles</creatorcontrib><creatorcontrib>Postovit, Lynne-Marie</creatorcontrib><creatorcontrib>Siegers, Gabrielle M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Indrani</au><au>Dieters-Castator, Dylan</au><au>Papatzimas, James W.</au><au>Medina, Anais</au><au>Schueler, Julia</au><au>Derksen, Darren J.</au><au>Lajoie, Gilles</au><au>Postovit, Lynne-Marie</au><au>Siegers, Gabrielle M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ADAM protease inhibition overcomes resistance of breast cancer stem-like cells to γδ T cell immunotherapy</atitle><jtitle>Cancer letters</jtitle><addtitle>Cancer Lett</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>496</volume><spage>156</spage><epage>168</epage><pages>156-168</pages><issn>0304-3835</issn><eissn>1872-7980</eissn><abstract>Gamma delta T cells (γδTc) have tremendous anti-tumoral activity, thus γδTc immunotherapy is currently under development for various malignancies. We targeted breast cancer stem-like cells (BCSC), a rare cell population responsible for patient mortality. BCSC were mostly susceptible to γδTc immunotherapy, yet some escaped. The BCSC secretome rendered γδTc hypo-responsive, and resistant BCSC expressed more PD-L1 and anti-apoptotic protein MCL-1 than non-stem-like cells (NSC). BCSC resistance was partially overcome by dMCL1-2, an MCL-1 degrader, or more fully by blocking PD-1 on γδTc. Increased MICA shedding was prevented by the ADAM inhibitor GW280264X, rendering BCSC as sensitive to γδTc cytotoxicity as NSC. Our data show promising potential for γδTc immunotherapy against BCSC while unraveling immune evasion mechanisms exploited by BCSC, which likely also enable their resistance to cytotoxic T and NK cells. Overcoming this resistance, as we have done here, will improve cancer immunotherapy, leading to better cancer patient outcomes.
•Breast cancer stem-like cells (BCSC) use multiple mechanisms to evade γδ T cells.•Blocking PD-1 partially reverses BCSC resistance to γδ T cell cytotoxicity.•Targeting the anti-apoptotic protein MCL-1 increases BCSC sensitivity.•BCSC express lower MICA on the cell surface and shed more MICA than non-BCSC
.•ADAM inhibition prevents MICA shedding, overcoming BCSC resistance to γδTc.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>33045304</pmid><doi>10.1016/j.canlet.2020.10.013</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3522-455X</orcidid><orcidid>https://orcid.org/0000-0001-8960-422X</orcidid><orcidid>https://orcid.org/0000-0003-1984-7343</orcidid><orcidid>https://orcid.org/0000-0003-2154-0279</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3835 |
ispartof | Cancer letters, 2021-01, Vol.496, p.156-168 |
issn | 0304-3835 1872-7980 |
language | eng |
recordid | cdi_proquest_miscellaneous_2450649423 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | ADAM Proteins - antagonists & inhibitors Animals Antibodies Antigens Apoptosis Biomarkers, Tumor - genetics Biomarkers, Tumor - metabolism Breast cancer Breast cancer stem cells Breast Neoplasms - drug therapy Breast Neoplasms - immunology Breast Neoplasms - metabolism Breast Neoplasms - pathology Cancer immunotherapy Cell Proliferation Cytokines Cytotoxicity Drug Resistance, Neoplasm - drug effects Ethics Female Gamma delta T cells Gene Expression Regulation, Neoplastic - drug effects Humans Immune evasion Immunotherapy Intraepithelial Lymphocytes - drug effects Intraepithelial Lymphocytes - immunology Killer Cells, Natural - drug effects Killer Cells, Natural - immunology Ligands Lungs Lymphocytes Lymphocytes T Mcl-1 protein Metastasis MICA Mice Mice, Inbred NOD Mice, SCID Molecular Targeted Therapy Mortality Neoplastic Stem Cells - drug effects Neoplastic Stem Cells - immunology Neoplastic Stem Cells - metabolism Neoplastic Stem Cells - pathology PD-1 PD-1 protein PD-L1 protein Protease Inhibitors - pharmacology Secretome Tumor Cells, Cultured Xenograft Model Antitumor Assays |
title | ADAM protease inhibition overcomes resistance of breast cancer stem-like cells to γδ T cell immunotherapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ADAM%20protease%20inhibition%20overcomes%20resistance%20of%20breast%20cancer%20stem-like%20cells%20to%20%CE%B3%CE%B4%20T%20cell%20immunotherapy&rft.jtitle=Cancer%20letters&rft.au=Dutta,%20Indrani&rft.date=2021-01-01&rft.volume=496&rft.spage=156&rft.epage=168&rft.pages=156-168&rft.issn=0304-3835&rft.eissn=1872-7980&rft_id=info:doi/10.1016/j.canlet.2020.10.013&rft_dat=%3Cproquest_cross%3E2450649423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459618241&rft_id=info:pmid/33045304&rft_els_id=S0304383520305358&rfr_iscdi=true |