ADAM protease inhibition overcomes resistance of breast cancer stem-like cells to γδ T cell immunotherapy

Gamma delta T cells (γδTc) have tremendous anti-tumoral activity, thus γδTc immunotherapy is currently under development for various malignancies. We targeted breast cancer stem-like cells (BCSC), a rare cell population responsible for patient mortality. BCSC were mostly susceptible to γδTc immunoth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer letters 2021-01, Vol.496, p.156-168
Hauptverfasser: Dutta, Indrani, Dieters-Castator, Dylan, Papatzimas, James W., Medina, Anais, Schueler, Julia, Derksen, Darren J., Lajoie, Gilles, Postovit, Lynne-Marie, Siegers, Gabrielle M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 168
container_issue
container_start_page 156
container_title Cancer letters
container_volume 496
creator Dutta, Indrani
Dieters-Castator, Dylan
Papatzimas, James W.
Medina, Anais
Schueler, Julia
Derksen, Darren J.
Lajoie, Gilles
Postovit, Lynne-Marie
Siegers, Gabrielle M.
description Gamma delta T cells (γδTc) have tremendous anti-tumoral activity, thus γδTc immunotherapy is currently under development for various malignancies. We targeted breast cancer stem-like cells (BCSC), a rare cell population responsible for patient mortality. BCSC were mostly susceptible to γδTc immunotherapy, yet some escaped. The BCSC secretome rendered γδTc hypo-responsive, and resistant BCSC expressed more PD-L1 and anti-apoptotic protein MCL-1 than non-stem-like cells (NSC). BCSC resistance was partially overcome by dMCL1-2, an MCL-1 degrader, or more fully by blocking PD-1 on γδTc. Increased MICA shedding was prevented by the ADAM inhibitor GW280264X, rendering BCSC as sensitive to γδTc cytotoxicity as NSC. Our data show promising potential for γδTc immunotherapy against BCSC while unraveling immune evasion mechanisms exploited by BCSC, which likely also enable their resistance to cytotoxic T and NK cells. Overcoming this resistance, as we have done here, will improve cancer immunotherapy, leading to better cancer patient outcomes. •Breast cancer stem-like cells (BCSC) use multiple mechanisms to evade γδ T cells.•Blocking PD-1 partially reverses BCSC resistance to γδ T cell cytotoxicity.•Targeting the anti-apoptotic protein MCL-1 increases BCSC sensitivity.•BCSC express lower MICA on the cell surface and shed more MICA than non-BCSC 
.•ADAM inhibition prevents MICA shedding, overcoming BCSC resistance to γδTc.
doi_str_mv 10.1016/j.canlet.2020.10.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2450649423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304383520305358</els_id><sourcerecordid>2450649423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-7e630088bd46cde1858a3fe3026f1f8326f655181cc2194d73941c901d5bf62c3</originalsourceid><addsrcrecordid>eNp9kc1O3DAQx60KVLa0b1AhS1x6yeLvOJdKKz7aSiAu27OVOBPhJYm3trMSz0Wfg2fC6VIOHDhYoxn_Zjz-_xH6SsmSEqrONktbjz2kJSNsLi0J5R_QguqSFWWlyQFaEE5EwTWXR-hTjBtCiBSl_IiOeL6Q-SzQ_epidYO3wSeoI2A33rnGJedH7HcQrB8g4gDRxVSPFrDvcBMymbCd84BjgqHo3T1gC30fcfL46fHpL17_y7Ebhmn06Q5CvX34jA67uo_w5SUeo99Xl-vzn8X17Y9f56vrwgquUlGC4oRo3bRC2RaolrrmHXDCVEc7zXNQUlJNrWW0Em3JK0FtRWgrm04xy4_Rt_3c_K0_E8RkBhfndeoR_BQNE5IoUQnGM3r6Bt34KYx5u5mqFNVM0EyJPWWDjzFAZ7bBDXV4MJSY2QyzMXszzGzGXM1m5LaTl-FTM0D72vRf_Qx83wOQ1dg5CCZaB1nX1gWwybTevf_CM2xcnTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459618241</pqid></control><display><type>article</type><title>ADAM protease inhibition overcomes resistance of breast cancer stem-like cells to γδ T cell immunotherapy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Dutta, Indrani ; Dieters-Castator, Dylan ; Papatzimas, James W. ; Medina, Anais ; Schueler, Julia ; Derksen, Darren J. ; Lajoie, Gilles ; Postovit, Lynne-Marie ; Siegers, Gabrielle M.</creator><creatorcontrib>Dutta, Indrani ; Dieters-Castator, Dylan ; Papatzimas, James W. ; Medina, Anais ; Schueler, Julia ; Derksen, Darren J. ; Lajoie, Gilles ; Postovit, Lynne-Marie ; Siegers, Gabrielle M.</creatorcontrib><description>Gamma delta T cells (γδTc) have tremendous anti-tumoral activity, thus γδTc immunotherapy is currently under development for various malignancies. We targeted breast cancer stem-like cells (BCSC), a rare cell population responsible for patient mortality. BCSC were mostly susceptible to γδTc immunotherapy, yet some escaped. The BCSC secretome rendered γδTc hypo-responsive, and resistant BCSC expressed more PD-L1 and anti-apoptotic protein MCL-1 than non-stem-like cells (NSC). BCSC resistance was partially overcome by dMCL1-2, an MCL-1 degrader, or more fully by blocking PD-1 on γδTc. Increased MICA shedding was prevented by the ADAM inhibitor GW280264X, rendering BCSC as sensitive to γδTc cytotoxicity as NSC. Our data show promising potential for γδTc immunotherapy against BCSC while unraveling immune evasion mechanisms exploited by BCSC, which likely also enable their resistance to cytotoxic T and NK cells. Overcoming this resistance, as we have done here, will improve cancer immunotherapy, leading to better cancer patient outcomes. •Breast cancer stem-like cells (BCSC) use multiple mechanisms to evade γδ T cells.•Blocking PD-1 partially reverses BCSC resistance to γδ T cell cytotoxicity.•Targeting the anti-apoptotic protein MCL-1 increases BCSC sensitivity.•BCSC express lower MICA on the cell surface and shed more MICA than non-BCSC 
.•ADAM inhibition prevents MICA shedding, overcoming BCSC resistance to γδTc.</description><identifier>ISSN: 0304-3835</identifier><identifier>EISSN: 1872-7980</identifier><identifier>DOI: 10.1016/j.canlet.2020.10.013</identifier><identifier>PMID: 33045304</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>ADAM Proteins - antagonists &amp; inhibitors ; Animals ; Antibodies ; Antigens ; Apoptosis ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; Breast cancer ; Breast cancer stem cells ; Breast Neoplasms - drug therapy ; Breast Neoplasms - immunology ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Cancer immunotherapy ; Cell Proliferation ; Cytokines ; Cytotoxicity ; Drug Resistance, Neoplasm - drug effects ; Ethics ; Female ; Gamma delta T cells ; Gene Expression Regulation, Neoplastic - drug effects ; Humans ; Immune evasion ; Immunotherapy ; Intraepithelial Lymphocytes - drug effects ; Intraepithelial Lymphocytes - immunology ; Killer Cells, Natural - drug effects ; Killer Cells, Natural - immunology ; Ligands ; Lungs ; Lymphocytes ; Lymphocytes T ; Mcl-1 protein ; Metastasis ; MICA ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Molecular Targeted Therapy ; Mortality ; Neoplastic Stem Cells - drug effects ; Neoplastic Stem Cells - immunology ; Neoplastic Stem Cells - metabolism ; Neoplastic Stem Cells - pathology ; PD-1 ; PD-1 protein ; PD-L1 protein ; Protease Inhibitors - pharmacology ; Secretome ; Tumor Cells, Cultured ; Xenograft Model Antitumor Assays</subject><ispartof>Cancer letters, 2021-01, Vol.496, p.156-168</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>2020. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-7e630088bd46cde1858a3fe3026f1f8326f655181cc2194d73941c901d5bf62c3</citedby><cites>FETCH-LOGICAL-c436t-7e630088bd46cde1858a3fe3026f1f8326f655181cc2194d73941c901d5bf62c3</cites><orcidid>0000-0003-3522-455X ; 0000-0001-8960-422X ; 0000-0003-1984-7343 ; 0000-0003-2154-0279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.canlet.2020.10.013$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33045304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutta, Indrani</creatorcontrib><creatorcontrib>Dieters-Castator, Dylan</creatorcontrib><creatorcontrib>Papatzimas, James W.</creatorcontrib><creatorcontrib>Medina, Anais</creatorcontrib><creatorcontrib>Schueler, Julia</creatorcontrib><creatorcontrib>Derksen, Darren J.</creatorcontrib><creatorcontrib>Lajoie, Gilles</creatorcontrib><creatorcontrib>Postovit, Lynne-Marie</creatorcontrib><creatorcontrib>Siegers, Gabrielle M.</creatorcontrib><title>ADAM protease inhibition overcomes resistance of breast cancer stem-like cells to γδ T cell immunotherapy</title><title>Cancer letters</title><addtitle>Cancer Lett</addtitle><description>Gamma delta T cells (γδTc) have tremendous anti-tumoral activity, thus γδTc immunotherapy is currently under development for various malignancies. We targeted breast cancer stem-like cells (BCSC), a rare cell population responsible for patient mortality. BCSC were mostly susceptible to γδTc immunotherapy, yet some escaped. The BCSC secretome rendered γδTc hypo-responsive, and resistant BCSC expressed more PD-L1 and anti-apoptotic protein MCL-1 than non-stem-like cells (NSC). BCSC resistance was partially overcome by dMCL1-2, an MCL-1 degrader, or more fully by blocking PD-1 on γδTc. Increased MICA shedding was prevented by the ADAM inhibitor GW280264X, rendering BCSC as sensitive to γδTc cytotoxicity as NSC. Our data show promising potential for γδTc immunotherapy against BCSC while unraveling immune evasion mechanisms exploited by BCSC, which likely also enable their resistance to cytotoxic T and NK cells. Overcoming this resistance, as we have done here, will improve cancer immunotherapy, leading to better cancer patient outcomes. •Breast cancer stem-like cells (BCSC) use multiple mechanisms to evade γδ T cells.•Blocking PD-1 partially reverses BCSC resistance to γδ T cell cytotoxicity.•Targeting the anti-apoptotic protein MCL-1 increases BCSC sensitivity.•BCSC express lower MICA on the cell surface and shed more MICA than non-BCSC 
.•ADAM inhibition prevents MICA shedding, overcoming BCSC resistance to γδTc.</description><subject>ADAM Proteins - antagonists &amp; inhibitors</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>Apoptosis</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Breast cancer</subject><subject>Breast cancer stem cells</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - immunology</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer immunotherapy</subject><subject>Cell Proliferation</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Ethics</subject><subject>Female</subject><subject>Gamma delta T cells</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Humans</subject><subject>Immune evasion</subject><subject>Immunotherapy</subject><subject>Intraepithelial Lymphocytes - drug effects</subject><subject>Intraepithelial Lymphocytes - immunology</subject><subject>Killer Cells, Natural - drug effects</subject><subject>Killer Cells, Natural - immunology</subject><subject>Ligands</subject><subject>Lungs</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mcl-1 protein</subject><subject>Metastasis</subject><subject>MICA</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Molecular Targeted Therapy</subject><subject>Mortality</subject><subject>Neoplastic Stem Cells - drug effects</subject><subject>Neoplastic Stem Cells - immunology</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>PD-1</subject><subject>PD-1 protein</subject><subject>PD-L1 protein</subject><subject>Protease Inhibitors - pharmacology</subject><subject>Secretome</subject><subject>Tumor Cells, Cultured</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0304-3835</issn><issn>1872-7980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1O3DAQx60KVLa0b1AhS1x6yeLvOJdKKz7aSiAu27OVOBPhJYm3trMSz0Wfg2fC6VIOHDhYoxn_Zjz-_xH6SsmSEqrONktbjz2kJSNsLi0J5R_QguqSFWWlyQFaEE5EwTWXR-hTjBtCiBSl_IiOeL6Q-SzQ_epidYO3wSeoI2A33rnGJedH7HcQrB8g4gDRxVSPFrDvcBMymbCd84BjgqHo3T1gC30fcfL46fHpL17_y7Ebhmn06Q5CvX34jA67uo_w5SUeo99Xl-vzn8X17Y9f56vrwgquUlGC4oRo3bRC2RaolrrmHXDCVEc7zXNQUlJNrWW0Em3JK0FtRWgrm04xy4_Rt_3c_K0_E8RkBhfndeoR_BQNE5IoUQnGM3r6Bt34KYx5u5mqFNVM0EyJPWWDjzFAZ7bBDXV4MJSY2QyzMXszzGzGXM1m5LaTl-FTM0D72vRf_Qx83wOQ1dg5CCZaB1nX1gWwybTevf_CM2xcnTQ</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Dutta, Indrani</creator><creator>Dieters-Castator, Dylan</creator><creator>Papatzimas, James W.</creator><creator>Medina, Anais</creator><creator>Schueler, Julia</creator><creator>Derksen, Darren J.</creator><creator>Lajoie, Gilles</creator><creator>Postovit, Lynne-Marie</creator><creator>Siegers, Gabrielle M.</creator><general>Elsevier B.V</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3522-455X</orcidid><orcidid>https://orcid.org/0000-0001-8960-422X</orcidid><orcidid>https://orcid.org/0000-0003-1984-7343</orcidid><orcidid>https://orcid.org/0000-0003-2154-0279</orcidid></search><sort><creationdate>20210101</creationdate><title>ADAM protease inhibition overcomes resistance of breast cancer stem-like cells to γδ T cell immunotherapy</title><author>Dutta, Indrani ; Dieters-Castator, Dylan ; Papatzimas, James W. ; Medina, Anais ; Schueler, Julia ; Derksen, Darren J. ; Lajoie, Gilles ; Postovit, Lynne-Marie ; Siegers, Gabrielle M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-7e630088bd46cde1858a3fe3026f1f8326f655181cc2194d73941c901d5bf62c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ADAM Proteins - antagonists &amp; inhibitors</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>Apoptosis</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Breast cancer</topic><topic>Breast cancer stem cells</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - immunology</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer immunotherapy</topic><topic>Cell Proliferation</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Ethics</topic><topic>Female</topic><topic>Gamma delta T cells</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Humans</topic><topic>Immune evasion</topic><topic>Immunotherapy</topic><topic>Intraepithelial Lymphocytes - drug effects</topic><topic>Intraepithelial Lymphocytes - immunology</topic><topic>Killer Cells, Natural - drug effects</topic><topic>Killer Cells, Natural - immunology</topic><topic>Ligands</topic><topic>Lungs</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mcl-1 protein</topic><topic>Metastasis</topic><topic>MICA</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Molecular Targeted Therapy</topic><topic>Mortality</topic><topic>Neoplastic Stem Cells - drug effects</topic><topic>Neoplastic Stem Cells - immunology</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>PD-1</topic><topic>PD-1 protein</topic><topic>PD-L1 protein</topic><topic>Protease Inhibitors - pharmacology</topic><topic>Secretome</topic><topic>Tumor Cells, Cultured</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Indrani</creatorcontrib><creatorcontrib>Dieters-Castator, Dylan</creatorcontrib><creatorcontrib>Papatzimas, James W.</creatorcontrib><creatorcontrib>Medina, Anais</creatorcontrib><creatorcontrib>Schueler, Julia</creatorcontrib><creatorcontrib>Derksen, Darren J.</creatorcontrib><creatorcontrib>Lajoie, Gilles</creatorcontrib><creatorcontrib>Postovit, Lynne-Marie</creatorcontrib><creatorcontrib>Siegers, Gabrielle M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Indrani</au><au>Dieters-Castator, Dylan</au><au>Papatzimas, James W.</au><au>Medina, Anais</au><au>Schueler, Julia</au><au>Derksen, Darren J.</au><au>Lajoie, Gilles</au><au>Postovit, Lynne-Marie</au><au>Siegers, Gabrielle M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ADAM protease inhibition overcomes resistance of breast cancer stem-like cells to γδ T cell immunotherapy</atitle><jtitle>Cancer letters</jtitle><addtitle>Cancer Lett</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>496</volume><spage>156</spage><epage>168</epage><pages>156-168</pages><issn>0304-3835</issn><eissn>1872-7980</eissn><abstract>Gamma delta T cells (γδTc) have tremendous anti-tumoral activity, thus γδTc immunotherapy is currently under development for various malignancies. We targeted breast cancer stem-like cells (BCSC), a rare cell population responsible for patient mortality. BCSC were mostly susceptible to γδTc immunotherapy, yet some escaped. The BCSC secretome rendered γδTc hypo-responsive, and resistant BCSC expressed more PD-L1 and anti-apoptotic protein MCL-1 than non-stem-like cells (NSC). BCSC resistance was partially overcome by dMCL1-2, an MCL-1 degrader, or more fully by blocking PD-1 on γδTc. Increased MICA shedding was prevented by the ADAM inhibitor GW280264X, rendering BCSC as sensitive to γδTc cytotoxicity as NSC. Our data show promising potential for γδTc immunotherapy against BCSC while unraveling immune evasion mechanisms exploited by BCSC, which likely also enable their resistance to cytotoxic T and NK cells. Overcoming this resistance, as we have done here, will improve cancer immunotherapy, leading to better cancer patient outcomes. •Breast cancer stem-like cells (BCSC) use multiple mechanisms to evade γδ T cells.•Blocking PD-1 partially reverses BCSC resistance to γδ T cell cytotoxicity.•Targeting the anti-apoptotic protein MCL-1 increases BCSC sensitivity.•BCSC express lower MICA on the cell surface and shed more MICA than non-BCSC 
.•ADAM inhibition prevents MICA shedding, overcoming BCSC resistance to γδTc.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>33045304</pmid><doi>10.1016/j.canlet.2020.10.013</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3522-455X</orcidid><orcidid>https://orcid.org/0000-0001-8960-422X</orcidid><orcidid>https://orcid.org/0000-0003-1984-7343</orcidid><orcidid>https://orcid.org/0000-0003-2154-0279</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3835
ispartof Cancer letters, 2021-01, Vol.496, p.156-168
issn 0304-3835
1872-7980
language eng
recordid cdi_proquest_miscellaneous_2450649423
source MEDLINE; Elsevier ScienceDirect Journals
subjects ADAM Proteins - antagonists & inhibitors
Animals
Antibodies
Antigens
Apoptosis
Biomarkers, Tumor - genetics
Biomarkers, Tumor - metabolism
Breast cancer
Breast cancer stem cells
Breast Neoplasms - drug therapy
Breast Neoplasms - immunology
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Cancer immunotherapy
Cell Proliferation
Cytokines
Cytotoxicity
Drug Resistance, Neoplasm - drug effects
Ethics
Female
Gamma delta T cells
Gene Expression Regulation, Neoplastic - drug effects
Humans
Immune evasion
Immunotherapy
Intraepithelial Lymphocytes - drug effects
Intraepithelial Lymphocytes - immunology
Killer Cells, Natural - drug effects
Killer Cells, Natural - immunology
Ligands
Lungs
Lymphocytes
Lymphocytes T
Mcl-1 protein
Metastasis
MICA
Mice
Mice, Inbred NOD
Mice, SCID
Molecular Targeted Therapy
Mortality
Neoplastic Stem Cells - drug effects
Neoplastic Stem Cells - immunology
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - pathology
PD-1
PD-1 protein
PD-L1 protein
Protease Inhibitors - pharmacology
Secretome
Tumor Cells, Cultured
Xenograft Model Antitumor Assays
title ADAM protease inhibition overcomes resistance of breast cancer stem-like cells to γδ T cell immunotherapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ADAM%20protease%20inhibition%20overcomes%20resistance%20of%20breast%20cancer%20stem-like%20cells%20to%20%CE%B3%CE%B4%20T%20cell%20immunotherapy&rft.jtitle=Cancer%20letters&rft.au=Dutta,%20Indrani&rft.date=2021-01-01&rft.volume=496&rft.spage=156&rft.epage=168&rft.pages=156-168&rft.issn=0304-3835&rft.eissn=1872-7980&rft_id=info:doi/10.1016/j.canlet.2020.10.013&rft_dat=%3Cproquest_cross%3E2450649423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459618241&rft_id=info:pmid/33045304&rft_els_id=S0304383520305358&rfr_iscdi=true