Effect of Metal Ions on the Activity of Ten NAD-Dependent Formate Dehydrogenases
NAD-dependent formate dehydrogenase (FDH) enzymes are frequently used in industrial and scientific applications. FDH is a reversible enzyme that reduces the NAD molecule to NADH and produces CO 2 by oxidation of the formate ion, whereas it causes CO 2 reduction in the reverse reaction. Some transiti...
Gespeichert in:
Veröffentlicht in: | The Protein Journal 2020-10, Vol.39 (5), p.519-530 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 530 |
---|---|
container_issue | 5 |
container_start_page | 519 |
container_title | The Protein Journal |
container_volume | 39 |
creator | Bulut, Huri Valjakka, Jarkko Yuksel, Busra Yilmazer, Berin Turunen, Ossi Binay, Baris |
description | NAD-dependent formate dehydrogenase (FDH) enzymes are frequently used in industrial and scientific applications. FDH is a reversible enzyme that reduces the NAD molecule to NADH and produces CO
2
by oxidation of the formate ion, whereas it causes CO
2
reduction in the reverse reaction. Some transition metal elements – Fe
3+
, Mo
6+
and W
6 +
– can be found in the FDH structure of anaerobic and archaeal microorganisms, and these enzymes require cations and other redox-active cofactors for their FDH activity. While NAD-dependent FDHs do not necessarily require any metal cations, the presence of various metal cations can still affect FDH activities. To study the effect of 11 different metal ions, NAD-dependent FDH enzymes from ten different microorganisms were tested:
Ancylobacter aquaticus
(AaFDH),
Candida boidinii
(CboFDH),
Candida methylica
(CmFDH),
Ceriporiopsis subvermispora
(CsFDH),
Chaetomium thermophilum
(CtFDH),
Moraxella
sp. (MsFDH),
Myceliophthora thermophila
(MtFDH),
Paracoccus
sp. (PsFDH),
Saccharomyces cerevisiae
(ScFDH) and
Thiobacillus
sp. (TsFDH). It was found that metal ions (mainly Cu
2+
and Zn
2+
) could have quite strong inhibition effects on several enzymes in the forward reaction, whereas several cations (Li
+
, Mg
2+
, Mn
2+
, Fe
3+
and W
6+
) could increase the forward reaction of two FDHs. The highest activity increase (1.97 fold) was caused by Fe
3+
in AaFDH. The effect on the reverse reaction was minimal. The modelled structures of ten FDHs showed that the active site is formed by 15 highly conserved amino acid residues spatially settling around the formate binding site in a conserved way. However, the residue differences at some of the sites close to the substrate do not explain the activity differences. The active site space is very tight, excluding water molecules, as observed in earlier studies. Structural examination indicated that smaller metal ions might be spaced close to the active site to affect the reaction. Metal ion size showed partial correlation to the effect on inhibition or activation. Affinity of the substrate may also affect the sensitivity to the metal’s effect. In addition, amino acid differences on the protein surface may also be important for the metal ion effect. |
doi_str_mv | 10.1007/s10930-020-09924-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2449995065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A716527523</galeid><sourcerecordid>A716527523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-80b1eebc2bdaea8ddceb4090fa8d6602c7f71dce4925b1f9a7be38d5f55a58cb3</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYNYbK1-AR8k4Isv0-bvZPK4dFst1NaH-hwymZvtlJlkTbLS_fZmu9WiiISQy72_c7jhIPSOkhNKiDrNlGhOGsLq1ZqJ5uEFOqJS8UZowV8-1qzhXacO0euc7wlhnVbsFTrknAgumDxCX8-9B1dw9PgLFDvhyxgyjgGXO8ALV8YfY9nuprcQ8PVi2SxhDWGAUPBFTLMtgJdwtx1SXEGwGfIbdODtlOHt03uMvl2c3559bq5uPl2eLa4aJ0lXmo70FKB3rB8s2G4YHPSCaOJr3baEOeUVrU2hmeyp11b1wLtBeimt7FzPj9HHve86xe8byMXMY3YwTTZA3GTDhNBaS9LKin74C72PmxTqdpVSnAvaUvFMrewEZgw-lmTdztQsFG0lU5LxSp38g6pngHl0MYAfa_8PAdsLXIo5J_BmncbZpq2hxOxiNPsYTY3RPMZoHqro_dPGm36G4bfkV24V4Hsg11FYQXr-0n9sfwLlVqZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473341614</pqid></control><display><type>article</type><title>Effect of Metal Ions on the Activity of Ten NAD-Dependent Formate Dehydrogenases</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Bulut, Huri ; Valjakka, Jarkko ; Yuksel, Busra ; Yilmazer, Berin ; Turunen, Ossi ; Binay, Baris</creator><creatorcontrib>Bulut, Huri ; Valjakka, Jarkko ; Yuksel, Busra ; Yilmazer, Berin ; Turunen, Ossi ; Binay, Baris</creatorcontrib><description>NAD-dependent formate dehydrogenase (FDH) enzymes are frequently used in industrial and scientific applications. FDH is a reversible enzyme that reduces the NAD molecule to NADH and produces CO
2
by oxidation of the formate ion, whereas it causes CO
2
reduction in the reverse reaction. Some transition metal elements – Fe
3+
, Mo
6+
and W
6 +
– can be found in the FDH structure of anaerobic and archaeal microorganisms, and these enzymes require cations and other redox-active cofactors for their FDH activity. While NAD-dependent FDHs do not necessarily require any metal cations, the presence of various metal cations can still affect FDH activities. To study the effect of 11 different metal ions, NAD-dependent FDH enzymes from ten different microorganisms were tested:
Ancylobacter aquaticus
(AaFDH),
Candida boidinii
(CboFDH),
Candida methylica
(CmFDH),
Ceriporiopsis subvermispora
(CsFDH),
Chaetomium thermophilum
(CtFDH),
Moraxella
sp. (MsFDH),
Myceliophthora thermophila
(MtFDH),
Paracoccus
sp. (PsFDH),
Saccharomyces cerevisiae
(ScFDH) and
Thiobacillus
sp. (TsFDH). It was found that metal ions (mainly Cu
2+
and Zn
2+
) could have quite strong inhibition effects on several enzymes in the forward reaction, whereas several cations (Li
+
, Mg
2+
, Mn
2+
, Fe
3+
and W
6+
) could increase the forward reaction of two FDHs. The highest activity increase (1.97 fold) was caused by Fe
3+
in AaFDH. The effect on the reverse reaction was minimal. The modelled structures of ten FDHs showed that the active site is formed by 15 highly conserved amino acid residues spatially settling around the formate binding site in a conserved way. However, the residue differences at some of the sites close to the substrate do not explain the activity differences. The active site space is very tight, excluding water molecules, as observed in earlier studies. Structural examination indicated that smaller metal ions might be spaced close to the active site to affect the reaction. Metal ion size showed partial correlation to the effect on inhibition or activation. Affinity of the substrate may also affect the sensitivity to the metal’s effect. In addition, amino acid differences on the protein surface may also be important for the metal ion effect.</description><identifier>ISSN: 1572-3887</identifier><identifier>EISSN: 1573-4943</identifier><identifier>EISSN: 1875-8355</identifier><identifier>DOI: 10.1007/s10930-020-09924-x</identifier><identifier>PMID: 33043425</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Amino acids ; Anaerobic microorganisms ; Analysis ; Animal Anatomy ; Bacteria - enzymology ; Bacteria - genetics ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Binding sites ; Biochemistry ; Bioorganic Chemistry ; Carbon dioxide ; Catalytic Domain ; Cations ; Chemistry ; Chemistry and Materials Science ; Cofactors ; Copper ; Enzymes ; Ferric ions ; Formate dehydrogenase ; Formate Dehydrogenases - chemistry ; Formate Dehydrogenases - genetics ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungi - enzymology ; Fungi - genetics ; Histology ; Iron ; Magnesium ; Metal ions ; Metals - chemistry ; Microorganisms ; Morphology ; NAD ; NADH ; Nicotinamide adenine dinucleotide ; Organic Chemistry ; Oxidation ; Oxidoreductases ; Residues ; Transition metals ; Water chemistry ; Zinc ; Zinc compounds</subject><ispartof>The Protein Journal, 2020-10, Vol.39 (5), p.519-530</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-80b1eebc2bdaea8ddceb4090fa8d6602c7f71dce4925b1f9a7be38d5f55a58cb3</citedby><cites>FETCH-LOGICAL-c508t-80b1eebc2bdaea8ddceb4090fa8d6602c7f71dce4925b1f9a7be38d5f55a58cb3</cites><orcidid>0000-0002-6190-6549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10930-020-09924-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10930-020-09924-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33043425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bulut, Huri</creatorcontrib><creatorcontrib>Valjakka, Jarkko</creatorcontrib><creatorcontrib>Yuksel, Busra</creatorcontrib><creatorcontrib>Yilmazer, Berin</creatorcontrib><creatorcontrib>Turunen, Ossi</creatorcontrib><creatorcontrib>Binay, Baris</creatorcontrib><title>Effect of Metal Ions on the Activity of Ten NAD-Dependent Formate Dehydrogenases</title><title>The Protein Journal</title><addtitle>Protein J</addtitle><addtitle>Protein J</addtitle><description>NAD-dependent formate dehydrogenase (FDH) enzymes are frequently used in industrial and scientific applications. FDH is a reversible enzyme that reduces the NAD molecule to NADH and produces CO
2
by oxidation of the formate ion, whereas it causes CO
2
reduction in the reverse reaction. Some transition metal elements – Fe
3+
, Mo
6+
and W
6 +
– can be found in the FDH structure of anaerobic and archaeal microorganisms, and these enzymes require cations and other redox-active cofactors for their FDH activity. While NAD-dependent FDHs do not necessarily require any metal cations, the presence of various metal cations can still affect FDH activities. To study the effect of 11 different metal ions, NAD-dependent FDH enzymes from ten different microorganisms were tested:
Ancylobacter aquaticus
(AaFDH),
Candida boidinii
(CboFDH),
Candida methylica
(CmFDH),
Ceriporiopsis subvermispora
(CsFDH),
Chaetomium thermophilum
(CtFDH),
Moraxella
sp. (MsFDH),
Myceliophthora thermophila
(MtFDH),
Paracoccus
sp. (PsFDH),
Saccharomyces cerevisiae
(ScFDH) and
Thiobacillus
sp. (TsFDH). It was found that metal ions (mainly Cu
2+
and Zn
2+
) could have quite strong inhibition effects on several enzymes in the forward reaction, whereas several cations (Li
+
, Mg
2+
, Mn
2+
, Fe
3+
and W
6+
) could increase the forward reaction of two FDHs. The highest activity increase (1.97 fold) was caused by Fe
3+
in AaFDH. The effect on the reverse reaction was minimal. The modelled structures of ten FDHs showed that the active site is formed by 15 highly conserved amino acid residues spatially settling around the formate binding site in a conserved way. However, the residue differences at some of the sites close to the substrate do not explain the activity differences. The active site space is very tight, excluding water molecules, as observed in earlier studies. Structural examination indicated that smaller metal ions might be spaced close to the active site to affect the reaction. Metal ion size showed partial correlation to the effect on inhibition or activation. Affinity of the substrate may also affect the sensitivity to the metal’s effect. In addition, amino acid differences on the protein surface may also be important for the metal ion effect.</description><subject>Amino acids</subject><subject>Anaerobic microorganisms</subject><subject>Analysis</subject><subject>Animal Anatomy</subject><subject>Bacteria - enzymology</subject><subject>Bacteria - genetics</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Carbon dioxide</subject><subject>Catalytic Domain</subject><subject>Cations</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cofactors</subject><subject>Copper</subject><subject>Enzymes</subject><subject>Ferric ions</subject><subject>Formate dehydrogenase</subject><subject>Formate Dehydrogenases - chemistry</subject><subject>Formate Dehydrogenases - genetics</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungi - enzymology</subject><subject>Fungi - genetics</subject><subject>Histology</subject><subject>Iron</subject><subject>Magnesium</subject><subject>Metal ions</subject><subject>Metals - chemistry</subject><subject>Microorganisms</subject><subject>Morphology</subject><subject>NAD</subject><subject>NADH</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Organic Chemistry</subject><subject>Oxidation</subject><subject>Oxidoreductases</subject><subject>Residues</subject><subject>Transition metals</subject><subject>Water chemistry</subject><subject>Zinc</subject><subject>Zinc compounds</subject><issn>1572-3887</issn><issn>1573-4943</issn><issn>1875-8355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV9rFDEUxYNYbK1-AR8k4Isv0-bvZPK4dFst1NaH-hwymZvtlJlkTbLS_fZmu9WiiISQy72_c7jhIPSOkhNKiDrNlGhOGsLq1ZqJ5uEFOqJS8UZowV8-1qzhXacO0euc7wlhnVbsFTrknAgumDxCX8-9B1dw9PgLFDvhyxgyjgGXO8ALV8YfY9nuprcQ8PVi2SxhDWGAUPBFTLMtgJdwtx1SXEGwGfIbdODtlOHt03uMvl2c3559bq5uPl2eLa4aJ0lXmo70FKB3rB8s2G4YHPSCaOJr3baEOeUVrU2hmeyp11b1wLtBeimt7FzPj9HHve86xe8byMXMY3YwTTZA3GTDhNBaS9LKin74C72PmxTqdpVSnAvaUvFMrewEZgw-lmTdztQsFG0lU5LxSp38g6pngHl0MYAfa_8PAdsLXIo5J_BmncbZpq2hxOxiNPsYTY3RPMZoHqro_dPGm36G4bfkV24V4Hsg11FYQXr-0n9sfwLlVqZw</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Bulut, Huri</creator><creator>Valjakka, Jarkko</creator><creator>Yuksel, Busra</creator><creator>Yilmazer, Berin</creator><creator>Turunen, Ossi</creator><creator>Binay, Baris</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6190-6549</orcidid></search><sort><creationdate>20201001</creationdate><title>Effect of Metal Ions on the Activity of Ten NAD-Dependent Formate Dehydrogenases</title><author>Bulut, Huri ; Valjakka, Jarkko ; Yuksel, Busra ; Yilmazer, Berin ; Turunen, Ossi ; Binay, Baris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-80b1eebc2bdaea8ddceb4090fa8d6602c7f71dce4925b1f9a7be38d5f55a58cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Anaerobic microorganisms</topic><topic>Analysis</topic><topic>Animal Anatomy</topic><topic>Bacteria - enzymology</topic><topic>Bacteria - genetics</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Carbon dioxide</topic><topic>Catalytic Domain</topic><topic>Cations</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cofactors</topic><topic>Copper</topic><topic>Enzymes</topic><topic>Ferric ions</topic><topic>Formate dehydrogenase</topic><topic>Formate Dehydrogenases - chemistry</topic><topic>Formate Dehydrogenases - genetics</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungi - enzymology</topic><topic>Fungi - genetics</topic><topic>Histology</topic><topic>Iron</topic><topic>Magnesium</topic><topic>Metal ions</topic><topic>Metals - chemistry</topic><topic>Microorganisms</topic><topic>Morphology</topic><topic>NAD</topic><topic>NADH</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Organic Chemistry</topic><topic>Oxidation</topic><topic>Oxidoreductases</topic><topic>Residues</topic><topic>Transition metals</topic><topic>Water chemistry</topic><topic>Zinc</topic><topic>Zinc compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bulut, Huri</creatorcontrib><creatorcontrib>Valjakka, Jarkko</creatorcontrib><creatorcontrib>Yuksel, Busra</creatorcontrib><creatorcontrib>Yilmazer, Berin</creatorcontrib><creatorcontrib>Turunen, Ossi</creatorcontrib><creatorcontrib>Binay, Baris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Protein Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bulut, Huri</au><au>Valjakka, Jarkko</au><au>Yuksel, Busra</au><au>Yilmazer, Berin</au><au>Turunen, Ossi</au><au>Binay, Baris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Metal Ions on the Activity of Ten NAD-Dependent Formate Dehydrogenases</atitle><jtitle>The Protein Journal</jtitle><stitle>Protein J</stitle><addtitle>Protein J</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>39</volume><issue>5</issue><spage>519</spage><epage>530</epage><pages>519-530</pages><issn>1572-3887</issn><eissn>1573-4943</eissn><eissn>1875-8355</eissn><abstract>NAD-dependent formate dehydrogenase (FDH) enzymes are frequently used in industrial and scientific applications. FDH is a reversible enzyme that reduces the NAD molecule to NADH and produces CO
2
by oxidation of the formate ion, whereas it causes CO
2
reduction in the reverse reaction. Some transition metal elements – Fe
3+
, Mo
6+
and W
6 +
– can be found in the FDH structure of anaerobic and archaeal microorganisms, and these enzymes require cations and other redox-active cofactors for their FDH activity. While NAD-dependent FDHs do not necessarily require any metal cations, the presence of various metal cations can still affect FDH activities. To study the effect of 11 different metal ions, NAD-dependent FDH enzymes from ten different microorganisms were tested:
Ancylobacter aquaticus
(AaFDH),
Candida boidinii
(CboFDH),
Candida methylica
(CmFDH),
Ceriporiopsis subvermispora
(CsFDH),
Chaetomium thermophilum
(CtFDH),
Moraxella
sp. (MsFDH),
Myceliophthora thermophila
(MtFDH),
Paracoccus
sp. (PsFDH),
Saccharomyces cerevisiae
(ScFDH) and
Thiobacillus
sp. (TsFDH). It was found that metal ions (mainly Cu
2+
and Zn
2+
) could have quite strong inhibition effects on several enzymes in the forward reaction, whereas several cations (Li
+
, Mg
2+
, Mn
2+
, Fe
3+
and W
6+
) could increase the forward reaction of two FDHs. The highest activity increase (1.97 fold) was caused by Fe
3+
in AaFDH. The effect on the reverse reaction was minimal. The modelled structures of ten FDHs showed that the active site is formed by 15 highly conserved amino acid residues spatially settling around the formate binding site in a conserved way. However, the residue differences at some of the sites close to the substrate do not explain the activity differences. The active site space is very tight, excluding water molecules, as observed in earlier studies. Structural examination indicated that smaller metal ions might be spaced close to the active site to affect the reaction. Metal ion size showed partial correlation to the effect on inhibition or activation. Affinity of the substrate may also affect the sensitivity to the metal’s effect. In addition, amino acid differences on the protein surface may also be important for the metal ion effect.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33043425</pmid><doi>10.1007/s10930-020-09924-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6190-6549</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1572-3887 |
ispartof | The Protein Journal, 2020-10, Vol.39 (5), p.519-530 |
issn | 1572-3887 1573-4943 1875-8355 |
language | eng |
recordid | cdi_proquest_miscellaneous_2449995065 |
source | MEDLINE; SpringerNature Journals |
subjects | Amino acids Anaerobic microorganisms Analysis Animal Anatomy Bacteria - enzymology Bacteria - genetics Bacterial Proteins - chemistry Bacterial Proteins - genetics Binding sites Biochemistry Bioorganic Chemistry Carbon dioxide Catalytic Domain Cations Chemistry Chemistry and Materials Science Cofactors Copper Enzymes Ferric ions Formate dehydrogenase Formate Dehydrogenases - chemistry Formate Dehydrogenases - genetics Fungal Proteins - chemistry Fungal Proteins - genetics Fungi - enzymology Fungi - genetics Histology Iron Magnesium Metal ions Metals - chemistry Microorganisms Morphology NAD NADH Nicotinamide adenine dinucleotide Organic Chemistry Oxidation Oxidoreductases Residues Transition metals Water chemistry Zinc Zinc compounds |
title | Effect of Metal Ions on the Activity of Ten NAD-Dependent Formate Dehydrogenases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Metal%20Ions%20on%20the%20Activity%20of%20Ten%20NAD-Dependent%20Formate%20Dehydrogenases&rft.jtitle=The%20Protein%20Journal&rft.au=Bulut,%20Huri&rft.date=2020-10-01&rft.volume=39&rft.issue=5&rft.spage=519&rft.epage=530&rft.pages=519-530&rft.issn=1572-3887&rft.eissn=1573-4943&rft_id=info:doi/10.1007/s10930-020-09924-x&rft_dat=%3Cgale_proqu%3EA716527523%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473341614&rft_id=info:pmid/33043425&rft_galeid=A716527523&rfr_iscdi=true |