Bacterial catabolism of indole-3-acetic acid
Indole-3-acetic acid (IAA) is a molecule with the chemical formula C 10 H 9 NO 2 , with a demonstrated presence in various environments and organisms, and with a biological function in several of these organisms, most notably in plants where it acts as a growth hormone. The existence of microorganis...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2020-11, Vol.104 (22), p.9535-9550 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9550 |
---|---|
container_issue | 22 |
container_start_page | 9535 |
container_title | Applied microbiology and biotechnology |
container_volume | 104 |
creator | Laird, Tyler S. Flores, Neptali Leveau, Johan H. J. |
description | Indole-3-acetic acid (IAA) is a molecule with the chemical formula C
10
H
9
NO
2
, with a demonstrated presence in various environments and organisms, and with a biological function in several of these organisms, most notably in plants where it acts as a growth hormone. The existence of microorganisms with the ability to catabolize or assimilate IAA has long been recognized. To date, two sets of gene clusters underlying this property in bacteria have been identified and characterized: one (
iac
) is responsible for the aerobic degradation of IAA into catechol, and another (
iaa
) for the anaerobic conversion of IAA to 2-aminobenzoyl-CoA. Here, we summarize the literature on the products, reactions, and pathways that these gene clusters encode. We explore two hypotheses about the benefit that
iac
/
iaa
gene clusters confer upon their bacterial hosts: (1) exploitation of IAA as a source of carbon, nitrogen, and energy; and (2) interference with IAA-dependent processes and functions in other organisms, including plants. The evidence for both hypotheses will be reviewed for
iac
/
iaa
-carrying model strains of
Pseudomonas putida
,
Enterobacter soli
,
Acinetobacter baumannii
,
Paraburkholderia phytofirmans
,
Caballeronia glathei
,
Aromatoleum evansii
, and
Aromatoleum aromaticum
, more specifically in the context of access to IAA in the environments from which these bacteria were originally isolated, which include not only plants, but also soils and sediment, as well as patients in hospital environments. We end the mini-review with an outlook for
iac
/
iaa
-inspired research that addresses current gaps in knowledge, biotechnological applications of
iac
/
iaa
-encoded enzymology, and the use of IAA-destroying bacteria to treat pathologies related to IAA excess in plants and humans.
Key points
•
The
iac/iaa
gene clusters encode bacterial catabolism of the plant growth hormone IAA.
•
Plants are not the only environment where IAA or IAA-degrading bacteria can be found.
•
The
iac/iaa
genes allow growth at the expense of IAA; other benefits remain unknown. |
doi_str_mv | 10.1007/s00253-020-10938-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2449962958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A639931522</galeid><sourcerecordid>A639931522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-da8f010eebd54c9acf5695b70e29cd84a0e5261e809ba8bd856479c2ee0c7b803</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhkOp2LX6B3pRFnqjYOpJMvm6rMWPQkFo9TpkMmeWlJlJm8yA_nuzbrWsiOQikDzvyzk8hJwwOGcA-l0B4FJQ4EAZWGGoPSAr1ghOQbHmkKyAaUm1tOaIvCjlDoBxo9RzciQECG2ZWpG3732YMUc_rIOffZuGWMZ16tdx6tKAVFAfcI5h7UPsXpJnvR8Kvnq8j8m3jx--Xn6m118-XV1eXNMgtZ1p500PDBDbTjbB-tBLZWWrAbkNnWk8oOSKoQHbetN2RqpG28ARIejWgDgmr3e99zk9LFhmN8YScBj8hGkpjjeNtYpbaSp69hd6l5Y81ekqpZmURmn7RG38gC5OfZqzD9tSd6GEtYJJzit1_g-qng7HGNKEfazve4E3e4HKzPh93vilFHd1e7PP8h0bciolY-_ucxx9_uEYuK1Ot9Ppqk73S6fbzn36uN3Sjtj9ifz2VwGxA0r9mjaYn9b_T-1PN0Wlsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471558679</pqid></control><display><type>article</type><title>Bacterial catabolism of indole-3-acetic acid</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Laird, Tyler S. ; Flores, Neptali ; Leveau, Johan H. J.</creator><creatorcontrib>Laird, Tyler S. ; Flores, Neptali ; Leveau, Johan H. J.</creatorcontrib><description>Indole-3-acetic acid (IAA) is a molecule with the chemical formula C
10
H
9
NO
2
, with a demonstrated presence in various environments and organisms, and with a biological function in several of these organisms, most notably in plants where it acts as a growth hormone. The existence of microorganisms with the ability to catabolize or assimilate IAA has long been recognized. To date, two sets of gene clusters underlying this property in bacteria have been identified and characterized: one (
iac
) is responsible for the aerobic degradation of IAA into catechol, and another (
iaa
) for the anaerobic conversion of IAA to 2-aminobenzoyl-CoA. Here, we summarize the literature on the products, reactions, and pathways that these gene clusters encode. We explore two hypotheses about the benefit that
iac
/
iaa
gene clusters confer upon their bacterial hosts: (1) exploitation of IAA as a source of carbon, nitrogen, and energy; and (2) interference with IAA-dependent processes and functions in other organisms, including plants. The evidence for both hypotheses will be reviewed for
iac
/
iaa
-carrying model strains of
Pseudomonas putida
,
Enterobacter soli
,
Acinetobacter baumannii
,
Paraburkholderia phytofirmans
,
Caballeronia glathei
,
Aromatoleum evansii
, and
Aromatoleum aromaticum
, more specifically in the context of access to IAA in the environments from which these bacteria were originally isolated, which include not only plants, but also soils and sediment, as well as patients in hospital environments. We end the mini-review with an outlook for
iac
/
iaa
-inspired research that addresses current gaps in knowledge, biotechnological applications of
iac
/
iaa
-encoded enzymology, and the use of IAA-destroying bacteria to treat pathologies related to IAA excess in plants and humans.
Key points
•
The
iac/iaa
gene clusters encode bacterial catabolism of the plant growth hormone IAA.
•
Plants are not the only environment where IAA or IAA-degrading bacteria can be found.
•
The
iac/iaa
genes allow growth at the expense of IAA; other benefits remain unknown.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-020-10938-9</identifier><identifier>PMID: 33037916</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetic acid ; Aerobic conditions ; Analysis ; Auxin ; Bacteria ; Biodegradation ; Biomedical and Life Sciences ; Biotechnology ; Burkholderiaceae ; Catabolism ; Catechol ; Chemical properties ; Enterobacter ; Enzymology ; Gene clusters ; Genetic aspects ; Growth hormones ; Humans ; Hypotheses ; Indoleacetic acid ; Indoleacetic Acids - metabolism ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Mini-Review ; Organisms ; Physiological aspects ; Phytohormones ; Plant growth ; Pseudomonas putida ; Rhodocyclaceae ; Urinary tract infections</subject><ispartof>Applied microbiology and biotechnology, 2020-11, Vol.104 (22), p.9535-9550</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-da8f010eebd54c9acf5695b70e29cd84a0e5261e809ba8bd856479c2ee0c7b803</citedby><cites>FETCH-LOGICAL-c579t-da8f010eebd54c9acf5695b70e29cd84a0e5261e809ba8bd856479c2ee0c7b803</cites><orcidid>0000-0003-2317-2895 ; 0000-0002-8376-4553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-020-10938-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-020-10938-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33037916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Laird, Tyler S.</creatorcontrib><creatorcontrib>Flores, Neptali</creatorcontrib><creatorcontrib>Leveau, Johan H. J.</creatorcontrib><title>Bacterial catabolism of indole-3-acetic acid</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Indole-3-acetic acid (IAA) is a molecule with the chemical formula C
10
H
9
NO
2
, with a demonstrated presence in various environments and organisms, and with a biological function in several of these organisms, most notably in plants where it acts as a growth hormone. The existence of microorganisms with the ability to catabolize or assimilate IAA has long been recognized. To date, two sets of gene clusters underlying this property in bacteria have been identified and characterized: one (
iac
) is responsible for the aerobic degradation of IAA into catechol, and another (
iaa
) for the anaerobic conversion of IAA to 2-aminobenzoyl-CoA. Here, we summarize the literature on the products, reactions, and pathways that these gene clusters encode. We explore two hypotheses about the benefit that
iac
/
iaa
gene clusters confer upon their bacterial hosts: (1) exploitation of IAA as a source of carbon, nitrogen, and energy; and (2) interference with IAA-dependent processes and functions in other organisms, including plants. The evidence for both hypotheses will be reviewed for
iac
/
iaa
-carrying model strains of
Pseudomonas putida
,
Enterobacter soli
,
Acinetobacter baumannii
,
Paraburkholderia phytofirmans
,
Caballeronia glathei
,
Aromatoleum evansii
, and
Aromatoleum aromaticum
, more specifically in the context of access to IAA in the environments from which these bacteria were originally isolated, which include not only plants, but also soils and sediment, as well as patients in hospital environments. We end the mini-review with an outlook for
iac
/
iaa
-inspired research that addresses current gaps in knowledge, biotechnological applications of
iac
/
iaa
-encoded enzymology, and the use of IAA-destroying bacteria to treat pathologies related to IAA excess in plants and humans.
Key points
•
The
iac/iaa
gene clusters encode bacterial catabolism of the plant growth hormone IAA.
•
Plants are not the only environment where IAA or IAA-degrading bacteria can be found.
•
The
iac/iaa
genes allow growth at the expense of IAA; other benefits remain unknown.</description><subject>Acetic acid</subject><subject>Aerobic conditions</subject><subject>Analysis</subject><subject>Auxin</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Burkholderiaceae</subject><subject>Catabolism</subject><subject>Catechol</subject><subject>Chemical properties</subject><subject>Enterobacter</subject><subject>Enzymology</subject><subject>Gene clusters</subject><subject>Genetic aspects</subject><subject>Growth hormones</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Indoleacetic acid</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Mini-Review</subject><subject>Organisms</subject><subject>Physiological aspects</subject><subject>Phytohormones</subject><subject>Plant growth</subject><subject>Pseudomonas putida</subject><subject>Rhodocyclaceae</subject><subject>Urinary tract infections</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kV1rFDEUhkOp2LX6B3pRFnqjYOpJMvm6rMWPQkFo9TpkMmeWlJlJm8yA_nuzbrWsiOQikDzvyzk8hJwwOGcA-l0B4FJQ4EAZWGGoPSAr1ghOQbHmkKyAaUm1tOaIvCjlDoBxo9RzciQECG2ZWpG3732YMUc_rIOffZuGWMZ16tdx6tKAVFAfcI5h7UPsXpJnvR8Kvnq8j8m3jx--Xn6m118-XV1eXNMgtZ1p500PDBDbTjbB-tBLZWWrAbkNnWk8oOSKoQHbetN2RqpG28ARIejWgDgmr3e99zk9LFhmN8YScBj8hGkpjjeNtYpbaSp69hd6l5Y81ekqpZmURmn7RG38gC5OfZqzD9tSd6GEtYJJzit1_g-qng7HGNKEfazve4E3e4HKzPh93vilFHd1e7PP8h0bciolY-_ucxx9_uEYuK1Ot9Ppqk73S6fbzn36uN3Sjtj9ifz2VwGxA0r9mjaYn9b_T-1PN0Wlsg</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Laird, Tyler S.</creator><creator>Flores, Neptali</creator><creator>Leveau, Johan H. J.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2317-2895</orcidid><orcidid>https://orcid.org/0000-0002-8376-4553</orcidid></search><sort><creationdate>20201101</creationdate><title>Bacterial catabolism of indole-3-acetic acid</title><author>Laird, Tyler S. ; Flores, Neptali ; Leveau, Johan H. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-da8f010eebd54c9acf5695b70e29cd84a0e5261e809ba8bd856479c2ee0c7b803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetic acid</topic><topic>Aerobic conditions</topic><topic>Analysis</topic><topic>Auxin</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Burkholderiaceae</topic><topic>Catabolism</topic><topic>Catechol</topic><topic>Chemical properties</topic><topic>Enterobacter</topic><topic>Enzymology</topic><topic>Gene clusters</topic><topic>Genetic aspects</topic><topic>Growth hormones</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Indoleacetic acid</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Mini-Review</topic><topic>Organisms</topic><topic>Physiological aspects</topic><topic>Phytohormones</topic><topic>Plant growth</topic><topic>Pseudomonas putida</topic><topic>Rhodocyclaceae</topic><topic>Urinary tract infections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laird, Tyler S.</creatorcontrib><creatorcontrib>Flores, Neptali</creatorcontrib><creatorcontrib>Leveau, Johan H. J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laird, Tyler S.</au><au>Flores, Neptali</au><au>Leveau, Johan H. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial catabolism of indole-3-acetic acid</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>104</volume><issue>22</issue><spage>9535</spage><epage>9550</epage><pages>9535-9550</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Indole-3-acetic acid (IAA) is a molecule with the chemical formula C
10
H
9
NO
2
, with a demonstrated presence in various environments and organisms, and with a biological function in several of these organisms, most notably in plants where it acts as a growth hormone. The existence of microorganisms with the ability to catabolize or assimilate IAA has long been recognized. To date, two sets of gene clusters underlying this property in bacteria have been identified and characterized: one (
iac
) is responsible for the aerobic degradation of IAA into catechol, and another (
iaa
) for the anaerobic conversion of IAA to 2-aminobenzoyl-CoA. Here, we summarize the literature on the products, reactions, and pathways that these gene clusters encode. We explore two hypotheses about the benefit that
iac
/
iaa
gene clusters confer upon their bacterial hosts: (1) exploitation of IAA as a source of carbon, nitrogen, and energy; and (2) interference with IAA-dependent processes and functions in other organisms, including plants. The evidence for both hypotheses will be reviewed for
iac
/
iaa
-carrying model strains of
Pseudomonas putida
,
Enterobacter soli
,
Acinetobacter baumannii
,
Paraburkholderia phytofirmans
,
Caballeronia glathei
,
Aromatoleum evansii
, and
Aromatoleum aromaticum
, more specifically in the context of access to IAA in the environments from which these bacteria were originally isolated, which include not only plants, but also soils and sediment, as well as patients in hospital environments. We end the mini-review with an outlook for
iac
/
iaa
-inspired research that addresses current gaps in knowledge, biotechnological applications of
iac
/
iaa
-encoded enzymology, and the use of IAA-destroying bacteria to treat pathologies related to IAA excess in plants and humans.
Key points
•
The
iac/iaa
gene clusters encode bacterial catabolism of the plant growth hormone IAA.
•
Plants are not the only environment where IAA or IAA-degrading bacteria can be found.
•
The
iac/iaa
genes allow growth at the expense of IAA; other benefits remain unknown.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33037916</pmid><doi>10.1007/s00253-020-10938-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2317-2895</orcidid><orcidid>https://orcid.org/0000-0002-8376-4553</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2020-11, Vol.104 (22), p.9535-9550 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_2449962958 |
source | MEDLINE; SpringerLink Journals |
subjects | Acetic acid Aerobic conditions Analysis Auxin Bacteria Biodegradation Biomedical and Life Sciences Biotechnology Burkholderiaceae Catabolism Catechol Chemical properties Enterobacter Enzymology Gene clusters Genetic aspects Growth hormones Humans Hypotheses Indoleacetic acid Indoleacetic Acids - metabolism Life Sciences Microbial Genetics and Genomics Microbiology Microorganisms Mini-Review Organisms Physiological aspects Phytohormones Plant growth Pseudomonas putida Rhodocyclaceae Urinary tract infections |
title | Bacterial catabolism of indole-3-acetic acid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20catabolism%20of%20indole-3-acetic%20acid&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Laird,%20Tyler%20S.&rft.date=2020-11-01&rft.volume=104&rft.issue=22&rft.spage=9535&rft.epage=9550&rft.pages=9535-9550&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-020-10938-9&rft_dat=%3Cgale_proqu%3EA639931522%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471558679&rft_id=info:pmid/33037916&rft_galeid=A639931522&rfr_iscdi=true |