Bacterial catabolism of indole-3-acetic acid

Indole-3-acetic acid (IAA) is a molecule with the chemical formula C 10 H 9 NO 2 , with a demonstrated presence in various environments and organisms, and with a biological function in several of these organisms, most notably in plants where it acts as a growth hormone. The existence of microorganis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2020-11, Vol.104 (22), p.9535-9550
Hauptverfasser: Laird, Tyler S., Flores, Neptali, Leveau, Johan H. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9550
container_issue 22
container_start_page 9535
container_title Applied microbiology and biotechnology
container_volume 104
creator Laird, Tyler S.
Flores, Neptali
Leveau, Johan H. J.
description Indole-3-acetic acid (IAA) is a molecule with the chemical formula C 10 H 9 NO 2 , with a demonstrated presence in various environments and organisms, and with a biological function in several of these organisms, most notably in plants where it acts as a growth hormone. The existence of microorganisms with the ability to catabolize or assimilate IAA has long been recognized. To date, two sets of gene clusters underlying this property in bacteria have been identified and characterized: one ( iac ) is responsible for the aerobic degradation of IAA into catechol, and another ( iaa ) for the anaerobic conversion of IAA to 2-aminobenzoyl-CoA. Here, we summarize the literature on the products, reactions, and pathways that these gene clusters encode. We explore two hypotheses about the benefit that iac / iaa gene clusters confer upon their bacterial hosts: (1) exploitation of IAA as a source of carbon, nitrogen, and energy; and (2) interference with IAA-dependent processes and functions in other organisms, including plants. The evidence for both hypotheses will be reviewed for iac / iaa -carrying model strains of Pseudomonas putida , Enterobacter soli , Acinetobacter baumannii , Paraburkholderia phytofirmans , Caballeronia glathei , Aromatoleum evansii , and Aromatoleum aromaticum , more specifically in the context of access to IAA in the environments from which these bacteria were originally isolated, which include not only plants, but also soils and sediment, as well as patients in hospital environments. We end the mini-review with an outlook for iac / iaa -inspired research that addresses current gaps in knowledge, biotechnological applications of iac / iaa -encoded enzymology, and the use of IAA-destroying bacteria to treat pathologies related to IAA excess in plants and humans. Key points • The iac/iaa gene clusters encode bacterial catabolism of the plant growth hormone IAA. • Plants are not the only environment where IAA or IAA-degrading bacteria can be found. • The iac/iaa genes allow growth at the expense of IAA; other benefits remain unknown.
doi_str_mv 10.1007/s00253-020-10938-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2449962958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A639931522</galeid><sourcerecordid>A639931522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-da8f010eebd54c9acf5695b70e29cd84a0e5261e809ba8bd856479c2ee0c7b803</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhkOp2LX6B3pRFnqjYOpJMvm6rMWPQkFo9TpkMmeWlJlJm8yA_nuzbrWsiOQikDzvyzk8hJwwOGcA-l0B4FJQ4EAZWGGoPSAr1ghOQbHmkKyAaUm1tOaIvCjlDoBxo9RzciQECG2ZWpG3732YMUc_rIOffZuGWMZ16tdx6tKAVFAfcI5h7UPsXpJnvR8Kvnq8j8m3jx--Xn6m118-XV1eXNMgtZ1p500PDBDbTjbB-tBLZWWrAbkNnWk8oOSKoQHbetN2RqpG28ARIejWgDgmr3e99zk9LFhmN8YScBj8hGkpjjeNtYpbaSp69hd6l5Y81ekqpZmURmn7RG38gC5OfZqzD9tSd6GEtYJJzit1_g-qng7HGNKEfazve4E3e4HKzPh93vilFHd1e7PP8h0bciolY-_ucxx9_uEYuK1Ot9Ppqk73S6fbzn36uN3Sjtj9ifz2VwGxA0r9mjaYn9b_T-1PN0Wlsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471558679</pqid></control><display><type>article</type><title>Bacterial catabolism of indole-3-acetic acid</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Laird, Tyler S. ; Flores, Neptali ; Leveau, Johan H. J.</creator><creatorcontrib>Laird, Tyler S. ; Flores, Neptali ; Leveau, Johan H. J.</creatorcontrib><description>Indole-3-acetic acid (IAA) is a molecule with the chemical formula C 10 H 9 NO 2 , with a demonstrated presence in various environments and organisms, and with a biological function in several of these organisms, most notably in plants where it acts as a growth hormone. The existence of microorganisms with the ability to catabolize or assimilate IAA has long been recognized. To date, two sets of gene clusters underlying this property in bacteria have been identified and characterized: one ( iac ) is responsible for the aerobic degradation of IAA into catechol, and another ( iaa ) for the anaerobic conversion of IAA to 2-aminobenzoyl-CoA. Here, we summarize the literature on the products, reactions, and pathways that these gene clusters encode. We explore two hypotheses about the benefit that iac / iaa gene clusters confer upon their bacterial hosts: (1) exploitation of IAA as a source of carbon, nitrogen, and energy; and (2) interference with IAA-dependent processes and functions in other organisms, including plants. The evidence for both hypotheses will be reviewed for iac / iaa -carrying model strains of Pseudomonas putida , Enterobacter soli , Acinetobacter baumannii , Paraburkholderia phytofirmans , Caballeronia glathei , Aromatoleum evansii , and Aromatoleum aromaticum , more specifically in the context of access to IAA in the environments from which these bacteria were originally isolated, which include not only plants, but also soils and sediment, as well as patients in hospital environments. We end the mini-review with an outlook for iac / iaa -inspired research that addresses current gaps in knowledge, biotechnological applications of iac / iaa -encoded enzymology, and the use of IAA-destroying bacteria to treat pathologies related to IAA excess in plants and humans. Key points • The iac/iaa gene clusters encode bacterial catabolism of the plant growth hormone IAA. • Plants are not the only environment where IAA or IAA-degrading bacteria can be found. • The iac/iaa genes allow growth at the expense of IAA; other benefits remain unknown.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-020-10938-9</identifier><identifier>PMID: 33037916</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetic acid ; Aerobic conditions ; Analysis ; Auxin ; Bacteria ; Biodegradation ; Biomedical and Life Sciences ; Biotechnology ; Burkholderiaceae ; Catabolism ; Catechol ; Chemical properties ; Enterobacter ; Enzymology ; Gene clusters ; Genetic aspects ; Growth hormones ; Humans ; Hypotheses ; Indoleacetic acid ; Indoleacetic Acids - metabolism ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Mini-Review ; Organisms ; Physiological aspects ; Phytohormones ; Plant growth ; Pseudomonas putida ; Rhodocyclaceae ; Urinary tract infections</subject><ispartof>Applied microbiology and biotechnology, 2020-11, Vol.104 (22), p.9535-9550</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-da8f010eebd54c9acf5695b70e29cd84a0e5261e809ba8bd856479c2ee0c7b803</citedby><cites>FETCH-LOGICAL-c579t-da8f010eebd54c9acf5695b70e29cd84a0e5261e809ba8bd856479c2ee0c7b803</cites><orcidid>0000-0003-2317-2895 ; 0000-0002-8376-4553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-020-10938-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-020-10938-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33037916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Laird, Tyler S.</creatorcontrib><creatorcontrib>Flores, Neptali</creatorcontrib><creatorcontrib>Leveau, Johan H. J.</creatorcontrib><title>Bacterial catabolism of indole-3-acetic acid</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Indole-3-acetic acid (IAA) is a molecule with the chemical formula C 10 H 9 NO 2 , with a demonstrated presence in various environments and organisms, and with a biological function in several of these organisms, most notably in plants where it acts as a growth hormone. The existence of microorganisms with the ability to catabolize or assimilate IAA has long been recognized. To date, two sets of gene clusters underlying this property in bacteria have been identified and characterized: one ( iac ) is responsible for the aerobic degradation of IAA into catechol, and another ( iaa ) for the anaerobic conversion of IAA to 2-aminobenzoyl-CoA. Here, we summarize the literature on the products, reactions, and pathways that these gene clusters encode. We explore two hypotheses about the benefit that iac / iaa gene clusters confer upon their bacterial hosts: (1) exploitation of IAA as a source of carbon, nitrogen, and energy; and (2) interference with IAA-dependent processes and functions in other organisms, including plants. The evidence for both hypotheses will be reviewed for iac / iaa -carrying model strains of Pseudomonas putida , Enterobacter soli , Acinetobacter baumannii , Paraburkholderia phytofirmans , Caballeronia glathei , Aromatoleum evansii , and Aromatoleum aromaticum , more specifically in the context of access to IAA in the environments from which these bacteria were originally isolated, which include not only plants, but also soils and sediment, as well as patients in hospital environments. We end the mini-review with an outlook for iac / iaa -inspired research that addresses current gaps in knowledge, biotechnological applications of iac / iaa -encoded enzymology, and the use of IAA-destroying bacteria to treat pathologies related to IAA excess in plants and humans. Key points • The iac/iaa gene clusters encode bacterial catabolism of the plant growth hormone IAA. • Plants are not the only environment where IAA or IAA-degrading bacteria can be found. • The iac/iaa genes allow growth at the expense of IAA; other benefits remain unknown.</description><subject>Acetic acid</subject><subject>Aerobic conditions</subject><subject>Analysis</subject><subject>Auxin</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Burkholderiaceae</subject><subject>Catabolism</subject><subject>Catechol</subject><subject>Chemical properties</subject><subject>Enterobacter</subject><subject>Enzymology</subject><subject>Gene clusters</subject><subject>Genetic aspects</subject><subject>Growth hormones</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Indoleacetic acid</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Mini-Review</subject><subject>Organisms</subject><subject>Physiological aspects</subject><subject>Phytohormones</subject><subject>Plant growth</subject><subject>Pseudomonas putida</subject><subject>Rhodocyclaceae</subject><subject>Urinary tract infections</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kV1rFDEUhkOp2LX6B3pRFnqjYOpJMvm6rMWPQkFo9TpkMmeWlJlJm8yA_nuzbrWsiOQikDzvyzk8hJwwOGcA-l0B4FJQ4EAZWGGoPSAr1ghOQbHmkKyAaUm1tOaIvCjlDoBxo9RzciQECG2ZWpG3732YMUc_rIOffZuGWMZ16tdx6tKAVFAfcI5h7UPsXpJnvR8Kvnq8j8m3jx--Xn6m118-XV1eXNMgtZ1p500PDBDbTjbB-tBLZWWrAbkNnWk8oOSKoQHbetN2RqpG28ARIejWgDgmr3e99zk9LFhmN8YScBj8hGkpjjeNtYpbaSp69hd6l5Y81ekqpZmURmn7RG38gC5OfZqzD9tSd6GEtYJJzit1_g-qng7HGNKEfazve4E3e4HKzPh93vilFHd1e7PP8h0bciolY-_ucxx9_uEYuK1Ot9Ppqk73S6fbzn36uN3Sjtj9ifz2VwGxA0r9mjaYn9b_T-1PN0Wlsg</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Laird, Tyler S.</creator><creator>Flores, Neptali</creator><creator>Leveau, Johan H. J.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2317-2895</orcidid><orcidid>https://orcid.org/0000-0002-8376-4553</orcidid></search><sort><creationdate>20201101</creationdate><title>Bacterial catabolism of indole-3-acetic acid</title><author>Laird, Tyler S. ; Flores, Neptali ; Leveau, Johan H. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-da8f010eebd54c9acf5695b70e29cd84a0e5261e809ba8bd856479c2ee0c7b803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetic acid</topic><topic>Aerobic conditions</topic><topic>Analysis</topic><topic>Auxin</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Burkholderiaceae</topic><topic>Catabolism</topic><topic>Catechol</topic><topic>Chemical properties</topic><topic>Enterobacter</topic><topic>Enzymology</topic><topic>Gene clusters</topic><topic>Genetic aspects</topic><topic>Growth hormones</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Indoleacetic acid</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Mini-Review</topic><topic>Organisms</topic><topic>Physiological aspects</topic><topic>Phytohormones</topic><topic>Plant growth</topic><topic>Pseudomonas putida</topic><topic>Rhodocyclaceae</topic><topic>Urinary tract infections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laird, Tyler S.</creatorcontrib><creatorcontrib>Flores, Neptali</creatorcontrib><creatorcontrib>Leveau, Johan H. J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laird, Tyler S.</au><au>Flores, Neptali</au><au>Leveau, Johan H. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial catabolism of indole-3-acetic acid</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>104</volume><issue>22</issue><spage>9535</spage><epage>9550</epage><pages>9535-9550</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Indole-3-acetic acid (IAA) is a molecule with the chemical formula C 10 H 9 NO 2 , with a demonstrated presence in various environments and organisms, and with a biological function in several of these organisms, most notably in plants where it acts as a growth hormone. The existence of microorganisms with the ability to catabolize or assimilate IAA has long been recognized. To date, two sets of gene clusters underlying this property in bacteria have been identified and characterized: one ( iac ) is responsible for the aerobic degradation of IAA into catechol, and another ( iaa ) for the anaerobic conversion of IAA to 2-aminobenzoyl-CoA. Here, we summarize the literature on the products, reactions, and pathways that these gene clusters encode. We explore two hypotheses about the benefit that iac / iaa gene clusters confer upon their bacterial hosts: (1) exploitation of IAA as a source of carbon, nitrogen, and energy; and (2) interference with IAA-dependent processes and functions in other organisms, including plants. The evidence for both hypotheses will be reviewed for iac / iaa -carrying model strains of Pseudomonas putida , Enterobacter soli , Acinetobacter baumannii , Paraburkholderia phytofirmans , Caballeronia glathei , Aromatoleum evansii , and Aromatoleum aromaticum , more specifically in the context of access to IAA in the environments from which these bacteria were originally isolated, which include not only plants, but also soils and sediment, as well as patients in hospital environments. We end the mini-review with an outlook for iac / iaa -inspired research that addresses current gaps in knowledge, biotechnological applications of iac / iaa -encoded enzymology, and the use of IAA-destroying bacteria to treat pathologies related to IAA excess in plants and humans. Key points • The iac/iaa gene clusters encode bacterial catabolism of the plant growth hormone IAA. • Plants are not the only environment where IAA or IAA-degrading bacteria can be found. • The iac/iaa genes allow growth at the expense of IAA; other benefits remain unknown.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33037916</pmid><doi>10.1007/s00253-020-10938-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2317-2895</orcidid><orcidid>https://orcid.org/0000-0002-8376-4553</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2020-11, Vol.104 (22), p.9535-9550
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_2449962958
source MEDLINE; SpringerLink Journals
subjects Acetic acid
Aerobic conditions
Analysis
Auxin
Bacteria
Biodegradation
Biomedical and Life Sciences
Biotechnology
Burkholderiaceae
Catabolism
Catechol
Chemical properties
Enterobacter
Enzymology
Gene clusters
Genetic aspects
Growth hormones
Humans
Hypotheses
Indoleacetic acid
Indoleacetic Acids - metabolism
Life Sciences
Microbial Genetics and Genomics
Microbiology
Microorganisms
Mini-Review
Organisms
Physiological aspects
Phytohormones
Plant growth
Pseudomonas putida
Rhodocyclaceae
Urinary tract infections
title Bacterial catabolism of indole-3-acetic acid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20catabolism%20of%20indole-3-acetic%20acid&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Laird,%20Tyler%20S.&rft.date=2020-11-01&rft.volume=104&rft.issue=22&rft.spage=9535&rft.epage=9550&rft.pages=9535-9550&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-020-10938-9&rft_dat=%3Cgale_proqu%3EA639931522%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471558679&rft_id=info:pmid/33037916&rft_galeid=A639931522&rfr_iscdi=true