Deep learning–based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V)

Purpose To compare the image quality of brain computed tomography (CT) images reconstructed with deep learning–based image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V). Methods Sixty-two patients underwent routine noncontrast brain CT scans and datasets were r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroradiology 2021-06, Vol.63 (6), p.905-912
Hauptverfasser: Kim, Injoong, Kang, Hyunkoo, Yoon, Hyun Jung, Chung, Bo Mi, Shin, Na-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 912
container_issue 6
container_start_page 905
container_title Neuroradiology
container_volume 63
creator Kim, Injoong
Kang, Hyunkoo
Yoon, Hyun Jung
Chung, Bo Mi
Shin, Na-Young
description Purpose To compare the image quality of brain computed tomography (CT) images reconstructed with deep learning–based image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V). Methods Sixty-two patients underwent routine noncontrast brain CT scans and datasets were reconstructed with 30% ASIR-V and DLIR with three selectable reconstruction strength levels (low, medium, high). Objective parameters including CT attenuation, noise, noise reduction rate, artifact index of the posterior cranial fossa, and contrast-to-noise ratio (CNR) were measured at the levels of the centrum semiovale and basal ganglia. Subjective parameters including gray matter-white matter differentiation, sharpness, and overall diagnostic quality were also assessed and compared with the interobserver agreement. Results There was a gradual reduction in the image noise and artifact index of the posterior cranial fossa as the strength levels of DLIR increased (all P  
doi_str_mv 10.1007/s00234-020-02574-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2449960418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528314407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-12b43f55d2d86598fd046583bf755b67d1e6b04a7e4f202f7f9baa8eae8c81c03</originalsourceid><addsrcrecordid>eNp9kctu1TAQhi0EoofCC7BAltiUhWF8ixN21eFWqRISlG4tJxkfXOUkqe2Udsc7sOH5eBJMTymCBQvL1sw3_8z4J-Qxh-ccwLxIAEIqBgLK0UaxyztkxZUUjDcC7pJVyddMNgr2yIOUzgBAGmnukz0py0uDXJHvrxBnOqCLYxg3P75-a13Cnoat2yCN2E1jynHpcphG6qdI2-jCSNcnLwsyx-nilj1f3BDyFe2m7exiCX8J-TN1vZtzuECasssh5dC5gYaM0V1H_27ATnGiB4cfjz6w02cPyT3vhoSPbu598unN65P1O3b8_u3R-vCYdWWDzLholfRa96KvK93UvgdV6Vq23mjdVqbnWLWgnEHlBQhvfNM6V6PDuqt5B3KfHOx0yzbnC6ZstyF1OAxuxGlJVijVNBUoXhf06T_o2bTEsUxnhRa15EqBKZTYUV2cUoro7RzLF8Ury8H-8s3ufLPFN3vtm70sRU9upJd2i_1tyW-jCiB3QCqpcYPxT-__yP4EtYKmuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528314407</pqid></control><display><type>article</type><title>Deep learning–based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, Injoong ; Kang, Hyunkoo ; Yoon, Hyun Jung ; Chung, Bo Mi ; Shin, Na-Young</creator><creatorcontrib>Kim, Injoong ; Kang, Hyunkoo ; Yoon, Hyun Jung ; Chung, Bo Mi ; Shin, Na-Young</creatorcontrib><description>Purpose To compare the image quality of brain computed tomography (CT) images reconstructed with deep learning–based image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V). Methods Sixty-two patients underwent routine noncontrast brain CT scans and datasets were reconstructed with 30% ASIR-V and DLIR with three selectable reconstruction strength levels (low, medium, high). Objective parameters including CT attenuation, noise, noise reduction rate, artifact index of the posterior cranial fossa, and contrast-to-noise ratio (CNR) were measured at the levels of the centrum semiovale and basal ganglia. Subjective parameters including gray matter-white matter differentiation, sharpness, and overall diagnostic quality were also assessed and compared with the interobserver agreement. Results There was a gradual reduction in the image noise and artifact index of the posterior cranial fossa as the strength levels of DLIR increased (all P  &lt; 0.001) compared with that of ASIR-V. CNR in both the centrum semiovale and basal ganglia levels also improved from the low to high strength levels of DLIR compared with that of ASIR-V (all P  &lt; 0.001). DLIR images with medium and high strength levels demonstrated the best subjective image quality scores among the reconstruction datasets. There was moderate to good interobserver agreement for the subjective image quality assessments with ASIR-V and DLIR. Conclusion On routine brain CT scans, optimized protocols with DLIR allowed significant reduction of noise and artifacts with improved subjective image quality compared with ASIR-V.</description><identifier>ISSN: 0028-3940</identifier><identifier>EISSN: 1432-1920</identifier><identifier>DOI: 10.1007/s00234-020-02574-x</identifier><identifier>PMID: 33037503</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Attenuation ; Basal ganglia ; Brain ; Computed tomography ; Datasets ; Deep learning ; Diagnostic Neuroradiology ; Ganglia ; High strength ; Image processing ; Image quality ; Image reconstruction ; Imaging ; Iterative methods ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Neuroimaging ; Neurology ; Neuroradiology ; Neurosciences ; Neurosurgery ; Noise ; Noise reduction ; Parameters ; Quality assessment ; Radiology ; Sharpness ; Skull ; Statistics ; Substantia alba ; Substantia grisea</subject><ispartof>Neuroradiology, 2021-06, Vol.63 (6), p.905-912</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-12b43f55d2d86598fd046583bf755b67d1e6b04a7e4f202f7f9baa8eae8c81c03</citedby><cites>FETCH-LOGICAL-c375t-12b43f55d2d86598fd046583bf755b67d1e6b04a7e4f202f7f9baa8eae8c81c03</cites><orcidid>0000-0003-1157-6366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00234-020-02574-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00234-020-02574-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33037503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Injoong</creatorcontrib><creatorcontrib>Kang, Hyunkoo</creatorcontrib><creatorcontrib>Yoon, Hyun Jung</creatorcontrib><creatorcontrib>Chung, Bo Mi</creatorcontrib><creatorcontrib>Shin, Na-Young</creatorcontrib><title>Deep learning–based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V)</title><title>Neuroradiology</title><addtitle>Neuroradiology</addtitle><addtitle>Neuroradiology</addtitle><description>Purpose To compare the image quality of brain computed tomography (CT) images reconstructed with deep learning–based image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V). Methods Sixty-two patients underwent routine noncontrast brain CT scans and datasets were reconstructed with 30% ASIR-V and DLIR with three selectable reconstruction strength levels (low, medium, high). Objective parameters including CT attenuation, noise, noise reduction rate, artifact index of the posterior cranial fossa, and contrast-to-noise ratio (CNR) were measured at the levels of the centrum semiovale and basal ganglia. Subjective parameters including gray matter-white matter differentiation, sharpness, and overall diagnostic quality were also assessed and compared with the interobserver agreement. Results There was a gradual reduction in the image noise and artifact index of the posterior cranial fossa as the strength levels of DLIR increased (all P  &lt; 0.001) compared with that of ASIR-V. CNR in both the centrum semiovale and basal ganglia levels also improved from the low to high strength levels of DLIR compared with that of ASIR-V (all P  &lt; 0.001). DLIR images with medium and high strength levels demonstrated the best subjective image quality scores among the reconstruction datasets. There was moderate to good interobserver agreement for the subjective image quality assessments with ASIR-V and DLIR. Conclusion On routine brain CT scans, optimized protocols with DLIR allowed significant reduction of noise and artifacts with improved subjective image quality compared with ASIR-V.</description><subject>Attenuation</subject><subject>Basal ganglia</subject><subject>Brain</subject><subject>Computed tomography</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnostic Neuroradiology</subject><subject>Ganglia</subject><subject>High strength</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Iterative methods</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Parameters</subject><subject>Quality assessment</subject><subject>Radiology</subject><subject>Sharpness</subject><subject>Skull</subject><subject>Statistics</subject><subject>Substantia alba</subject><subject>Substantia grisea</subject><issn>0028-3940</issn><issn>1432-1920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kctu1TAQhi0EoofCC7BAltiUhWF8ixN21eFWqRISlG4tJxkfXOUkqe2Udsc7sOH5eBJMTymCBQvL1sw3_8z4J-Qxh-ccwLxIAEIqBgLK0UaxyztkxZUUjDcC7pJVyddMNgr2yIOUzgBAGmnukz0py0uDXJHvrxBnOqCLYxg3P75-a13Cnoat2yCN2E1jynHpcphG6qdI2-jCSNcnLwsyx-nilj1f3BDyFe2m7exiCX8J-TN1vZtzuECasssh5dC5gYaM0V1H_27ATnGiB4cfjz6w02cPyT3vhoSPbu598unN65P1O3b8_u3R-vCYdWWDzLholfRa96KvK93UvgdV6Vq23mjdVqbnWLWgnEHlBQhvfNM6V6PDuqt5B3KfHOx0yzbnC6ZstyF1OAxuxGlJVijVNBUoXhf06T_o2bTEsUxnhRa15EqBKZTYUV2cUoro7RzLF8Ury8H-8s3ufLPFN3vtm70sRU9upJd2i_1tyW-jCiB3QCqpcYPxT-__yP4EtYKmuw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Kim, Injoong</creator><creator>Kang, Hyunkoo</creator><creator>Yoon, Hyun Jung</creator><creator>Chung, Bo Mi</creator><creator>Shin, Na-Young</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1157-6366</orcidid></search><sort><creationdate>20210601</creationdate><title>Deep learning–based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V)</title><author>Kim, Injoong ; Kang, Hyunkoo ; Yoon, Hyun Jung ; Chung, Bo Mi ; Shin, Na-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-12b43f55d2d86598fd046583bf755b67d1e6b04a7e4f202f7f9baa8eae8c81c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Attenuation</topic><topic>Basal ganglia</topic><topic>Brain</topic><topic>Computed tomography</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnostic Neuroradiology</topic><topic>Ganglia</topic><topic>High strength</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Iterative methods</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Parameters</topic><topic>Quality assessment</topic><topic>Radiology</topic><topic>Sharpness</topic><topic>Skull</topic><topic>Statistics</topic><topic>Substantia alba</topic><topic>Substantia grisea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Injoong</creatorcontrib><creatorcontrib>Kang, Hyunkoo</creatorcontrib><creatorcontrib>Yoon, Hyun Jung</creatorcontrib><creatorcontrib>Chung, Bo Mi</creatorcontrib><creatorcontrib>Shin, Na-Young</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroradiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Injoong</au><au>Kang, Hyunkoo</au><au>Yoon, Hyun Jung</au><au>Chung, Bo Mi</au><au>Shin, Na-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning–based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V)</atitle><jtitle>Neuroradiology</jtitle><stitle>Neuroradiology</stitle><addtitle>Neuroradiology</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>63</volume><issue>6</issue><spage>905</spage><epage>912</epage><pages>905-912</pages><issn>0028-3940</issn><eissn>1432-1920</eissn><abstract>Purpose To compare the image quality of brain computed tomography (CT) images reconstructed with deep learning–based image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V). Methods Sixty-two patients underwent routine noncontrast brain CT scans and datasets were reconstructed with 30% ASIR-V and DLIR with three selectable reconstruction strength levels (low, medium, high). Objective parameters including CT attenuation, noise, noise reduction rate, artifact index of the posterior cranial fossa, and contrast-to-noise ratio (CNR) were measured at the levels of the centrum semiovale and basal ganglia. Subjective parameters including gray matter-white matter differentiation, sharpness, and overall diagnostic quality were also assessed and compared with the interobserver agreement. Results There was a gradual reduction in the image noise and artifact index of the posterior cranial fossa as the strength levels of DLIR increased (all P  &lt; 0.001) compared with that of ASIR-V. CNR in both the centrum semiovale and basal ganglia levels also improved from the low to high strength levels of DLIR compared with that of ASIR-V (all P  &lt; 0.001). DLIR images with medium and high strength levels demonstrated the best subjective image quality scores among the reconstruction datasets. There was moderate to good interobserver agreement for the subjective image quality assessments with ASIR-V and DLIR. Conclusion On routine brain CT scans, optimized protocols with DLIR allowed significant reduction of noise and artifacts with improved subjective image quality compared with ASIR-V.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33037503</pmid><doi>10.1007/s00234-020-02574-x</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1157-6366</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-3940
ispartof Neuroradiology, 2021-06, Vol.63 (6), p.905-912
issn 0028-3940
1432-1920
language eng
recordid cdi_proquest_miscellaneous_2449960418
source SpringerLink Journals - AutoHoldings
subjects Attenuation
Basal ganglia
Brain
Computed tomography
Datasets
Deep learning
Diagnostic Neuroradiology
Ganglia
High strength
Image processing
Image quality
Image reconstruction
Imaging
Iterative methods
Medical imaging
Medicine
Medicine & Public Health
Neuroimaging
Neurology
Neuroradiology
Neurosciences
Neurosurgery
Noise
Noise reduction
Parameters
Quality assessment
Radiology
Sharpness
Skull
Statistics
Substantia alba
Substantia grisea
title Deep learning–based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%E2%80%93based%20image%20reconstruction%20for%20brain%20CT:%20improved%20image%20quality%20compared%20with%20adaptive%20statistical%20iterative%20reconstruction-Veo%20(ASIR-V)&rft.jtitle=Neuroradiology&rft.au=Kim,%20Injoong&rft.date=2021-06-01&rft.volume=63&rft.issue=6&rft.spage=905&rft.epage=912&rft.pages=905-912&rft.issn=0028-3940&rft.eissn=1432-1920&rft_id=info:doi/10.1007/s00234-020-02574-x&rft_dat=%3Cproquest_cross%3E2528314407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528314407&rft_id=info:pmid/33037503&rfr_iscdi=true