Bethe-Salpeter Equation at the Critical End Point of the Mott Transition

Strong repulsive interactions between electrons can lead to a Mott metal-insulator transition. The dynamical mean-field theory (DMFT) explains the critical end point and the hysteresis region usually in terms of single-particle concepts, such as the spectral function and the quasiparticle weight. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2020-09, Vol.125 (13), p.1-136402, Article 136402
Hauptverfasser: van Loon, Erik G. C. P., Krien, Friedrich, Katanin, Andrey A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136402
container_issue 13
container_start_page 1
container_title Physical review letters
container_volume 125
creator van Loon, Erik G. C. P.
Krien, Friedrich
Katanin, Andrey A.
description Strong repulsive interactions between electrons can lead to a Mott metal-insulator transition. The dynamical mean-field theory (DMFT) explains the critical end point and the hysteresis region usually in terms of single-particle concepts, such as the spectral function and the quasiparticle weight. In this Letter, we reconsider the critical end point of the metal-insulator transition on the DMFT's two-particle level. We show that the relevant eigenvalue and eigenvector of the nonlocal Bethe-Salpeter kernel in the charge channel provide a unified picture of the hysteresis region and of the critical end point of the Mott transition. In particular, they simultaneously explain the thermodynamics of the hysteresis region and the iterative stability of the DMFT equations. This analysis paves the way for a deeper understanding of phase transitions in correlated materials.
doi_str_mv 10.1103/PhysRevLett.125.136402
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2449958651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449958651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b3b39540964291b506dccc61e4776ba4e6782eaa98eefc7c263d2ff1af1f0c113</originalsourceid><addsrcrecordid>eNpdkMFKAzEURYMoWKu_IAE3bqbmJZlkstRSrVCxaF2HTJrQKdNJTVKhf-_UuhBXd3HPe1wOQtdARgCE3c1X-_TmvmYu5xHQcgRMcEJP0ACIVIUE4KdoQAiDQhEiz9FFSmtCCFBRDdD0weWVK95Nu3XZRTz53JnchA6bjPsCj2OTG2taPOmWeB6aLuPgf5qXkDNeRNOl5nBwic68aZO7-s0h-nicLMbTYvb69Dy-nxWWgchFzWqmSk6U4FRBXRKxtNYKcFxKURvuhKyoM0ZVznkrLRVsSb0H48ETC8CG6Pb4dxvD586lrDdNsq5tTefCLmnKuVJlJcoDevMPXYdd7Pp1PVUCB1kp0VPiSNkYUorO621sNibuNRB9EKz_CNa9YH0UzL4BipNwmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451417896</pqid></control><display><type>article</type><title>Bethe-Salpeter Equation at the Critical End Point of the Mott Transition</title><source>Free E-Journal (出版社公開部分のみ)</source><source>APS: American Physical Society E-Journals (Physics)</source><creator>van Loon, Erik G. C. P. ; Krien, Friedrich ; Katanin, Andrey A.</creator><creatorcontrib>van Loon, Erik G. C. P. ; Krien, Friedrich ; Katanin, Andrey A.</creatorcontrib><description>Strong repulsive interactions between electrons can lead to a Mott metal-insulator transition. The dynamical mean-field theory (DMFT) explains the critical end point and the hysteresis region usually in terms of single-particle concepts, such as the spectral function and the quasiparticle weight. In this Letter, we reconsider the critical end point of the metal-insulator transition on the DMFT's two-particle level. We show that the relevant eigenvalue and eigenvector of the nonlocal Bethe-Salpeter kernel in the charge channel provide a unified picture of the hysteresis region and of the critical end point of the Mott transition. In particular, they simultaneously explain the thermodynamics of the hysteresis region and the iterative stability of the DMFT equations. This analysis paves the way for a deeper understanding of phase transitions in correlated materials.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.125.136402</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Bethe-Salpeter equation ; Eigenvalues ; Eigenvectors ; Elementary excitations ; Hysteresis ; Insulators ; Mean field theory ; Metal-insulator transition ; Phase transitions ; Stability analysis</subject><ispartof>Physical review letters, 2020-09, Vol.125 (13), p.1-136402, Article 136402</ispartof><rights>Copyright American Physical Society Sep 25, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b3b39540964291b506dccc61e4776ba4e6782eaa98eefc7c263d2ff1af1f0c113</citedby><cites>FETCH-LOGICAL-c316t-b3b39540964291b506dccc61e4776ba4e6782eaa98eefc7c263d2ff1af1f0c113</cites><orcidid>0000-0003-1574-657X ; 0000-0002-5436-290X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>van Loon, Erik G. C. P.</creatorcontrib><creatorcontrib>Krien, Friedrich</creatorcontrib><creatorcontrib>Katanin, Andrey A.</creatorcontrib><title>Bethe-Salpeter Equation at the Critical End Point of the Mott Transition</title><title>Physical review letters</title><description>Strong repulsive interactions between electrons can lead to a Mott metal-insulator transition. The dynamical mean-field theory (DMFT) explains the critical end point and the hysteresis region usually in terms of single-particle concepts, such as the spectral function and the quasiparticle weight. In this Letter, we reconsider the critical end point of the metal-insulator transition on the DMFT's two-particle level. We show that the relevant eigenvalue and eigenvector of the nonlocal Bethe-Salpeter kernel in the charge channel provide a unified picture of the hysteresis region and of the critical end point of the Mott transition. In particular, they simultaneously explain the thermodynamics of the hysteresis region and the iterative stability of the DMFT equations. This analysis paves the way for a deeper understanding of phase transitions in correlated materials.</description><subject>Bethe-Salpeter equation</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Elementary excitations</subject><subject>Hysteresis</subject><subject>Insulators</subject><subject>Mean field theory</subject><subject>Metal-insulator transition</subject><subject>Phase transitions</subject><subject>Stability analysis</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKAzEURYMoWKu_IAE3bqbmJZlkstRSrVCxaF2HTJrQKdNJTVKhf-_UuhBXd3HPe1wOQtdARgCE3c1X-_TmvmYu5xHQcgRMcEJP0ACIVIUE4KdoQAiDQhEiz9FFSmtCCFBRDdD0weWVK95Nu3XZRTz53JnchA6bjPsCj2OTG2taPOmWeB6aLuPgf5qXkDNeRNOl5nBwic68aZO7-s0h-nicLMbTYvb69Dy-nxWWgchFzWqmSk6U4FRBXRKxtNYKcFxKURvuhKyoM0ZVznkrLRVsSb0H48ETC8CG6Pb4dxvD586lrDdNsq5tTefCLmnKuVJlJcoDevMPXYdd7Pp1PVUCB1kp0VPiSNkYUorO621sNibuNRB9EKz_CNa9YH0UzL4BipNwmg</recordid><startdate>20200925</startdate><enddate>20200925</enddate><creator>van Loon, Erik G. C. P.</creator><creator>Krien, Friedrich</creator><creator>Katanin, Andrey A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1574-657X</orcidid><orcidid>https://orcid.org/0000-0002-5436-290X</orcidid></search><sort><creationdate>20200925</creationdate><title>Bethe-Salpeter Equation at the Critical End Point of the Mott Transition</title><author>van Loon, Erik G. C. P. ; Krien, Friedrich ; Katanin, Andrey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b3b39540964291b506dccc61e4776ba4e6782eaa98eefc7c263d2ff1af1f0c113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bethe-Salpeter equation</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Elementary excitations</topic><topic>Hysteresis</topic><topic>Insulators</topic><topic>Mean field theory</topic><topic>Metal-insulator transition</topic><topic>Phase transitions</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Loon, Erik G. C. P.</creatorcontrib><creatorcontrib>Krien, Friedrich</creatorcontrib><creatorcontrib>Katanin, Andrey A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Loon, Erik G. C. P.</au><au>Krien, Friedrich</au><au>Katanin, Andrey A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bethe-Salpeter Equation at the Critical End Point of the Mott Transition</atitle><jtitle>Physical review letters</jtitle><date>2020-09-25</date><risdate>2020</risdate><volume>125</volume><issue>13</issue><spage>1</spage><epage>136402</epage><pages>1-136402</pages><artnum>136402</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Strong repulsive interactions between electrons can lead to a Mott metal-insulator transition. The dynamical mean-field theory (DMFT) explains the critical end point and the hysteresis region usually in terms of single-particle concepts, such as the spectral function and the quasiparticle weight. In this Letter, we reconsider the critical end point of the metal-insulator transition on the DMFT's two-particle level. We show that the relevant eigenvalue and eigenvector of the nonlocal Bethe-Salpeter kernel in the charge channel provide a unified picture of the hysteresis region and of the critical end point of the Mott transition. In particular, they simultaneously explain the thermodynamics of the hysteresis region and the iterative stability of the DMFT equations. This analysis paves the way for a deeper understanding of phase transitions in correlated materials.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.125.136402</doi><orcidid>https://orcid.org/0000-0003-1574-657X</orcidid><orcidid>https://orcid.org/0000-0002-5436-290X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2020-09, Vol.125 (13), p.1-136402, Article 136402
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2449958651
source Free E-Journal (出版社公開部分のみ); APS: American Physical Society E-Journals (Physics)
subjects Bethe-Salpeter equation
Eigenvalues
Eigenvectors
Elementary excitations
Hysteresis
Insulators
Mean field theory
Metal-insulator transition
Phase transitions
Stability analysis
title Bethe-Salpeter Equation at the Critical End Point of the Mott Transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bethe-Salpeter%20Equation%20at%20the%20Critical%20End%20Point%20of%20the%20Mott%20Transition&rft.jtitle=Physical%20review%20letters&rft.au=van%20Loon,%20Erik%20G.%20C.%20P.&rft.date=2020-09-25&rft.volume=125&rft.issue=13&rft.spage=1&rft.epage=136402&rft.pages=1-136402&rft.artnum=136402&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.125.136402&rft_dat=%3Cproquest_cross%3E2449958651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451417896&rft_id=info:pmid/&rfr_iscdi=true