Bethe-Salpeter Equation at the Critical End Point of the Mott Transition
Strong repulsive interactions between electrons can lead to a Mott metal-insulator transition. The dynamical mean-field theory (DMFT) explains the critical end point and the hysteresis region usually in terms of single-particle concepts, such as the spectral function and the quasiparticle weight. In...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-09, Vol.125 (13), p.1-136402, Article 136402 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136402 |
---|---|
container_issue | 13 |
container_start_page | 1 |
container_title | Physical review letters |
container_volume | 125 |
creator | van Loon, Erik G. C. P. Krien, Friedrich Katanin, Andrey A. |
description | Strong repulsive interactions between electrons can lead to a Mott metal-insulator transition. The dynamical mean-field theory (DMFT) explains the critical end point and the hysteresis region usually in terms of single-particle concepts, such as the spectral function and the quasiparticle weight. In this Letter, we reconsider the critical end point of the metal-insulator transition on the DMFT's two-particle level. We show that the relevant eigenvalue and eigenvector of the nonlocal Bethe-Salpeter kernel in the charge channel provide a unified picture of the hysteresis region and of the critical end point of the Mott transition. In particular, they simultaneously explain the thermodynamics of the hysteresis region and the iterative stability of the DMFT equations. This analysis paves the way for a deeper understanding of phase transitions in correlated materials. |
doi_str_mv | 10.1103/PhysRevLett.125.136402 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2449958651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449958651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b3b39540964291b506dccc61e4776ba4e6782eaa98eefc7c263d2ff1af1f0c113</originalsourceid><addsrcrecordid>eNpdkMFKAzEURYMoWKu_IAE3bqbmJZlkstRSrVCxaF2HTJrQKdNJTVKhf-_UuhBXd3HPe1wOQtdARgCE3c1X-_TmvmYu5xHQcgRMcEJP0ACIVIUE4KdoQAiDQhEiz9FFSmtCCFBRDdD0weWVK95Nu3XZRTz53JnchA6bjPsCj2OTG2taPOmWeB6aLuPgf5qXkDNeRNOl5nBwic68aZO7-s0h-nicLMbTYvb69Dy-nxWWgchFzWqmSk6U4FRBXRKxtNYKcFxKURvuhKyoM0ZVznkrLRVsSb0H48ETC8CG6Pb4dxvD586lrDdNsq5tTefCLmnKuVJlJcoDevMPXYdd7Pp1PVUCB1kp0VPiSNkYUorO621sNibuNRB9EKz_CNa9YH0UzL4BipNwmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451417896</pqid></control><display><type>article</type><title>Bethe-Salpeter Equation at the Critical End Point of the Mott Transition</title><source>Free E-Journal (出版社公開部分のみ)</source><source>APS: American Physical Society E-Journals (Physics)</source><creator>van Loon, Erik G. C. P. ; Krien, Friedrich ; Katanin, Andrey A.</creator><creatorcontrib>van Loon, Erik G. C. P. ; Krien, Friedrich ; Katanin, Andrey A.</creatorcontrib><description>Strong repulsive interactions between electrons can lead to a Mott metal-insulator transition. The dynamical mean-field theory (DMFT) explains the critical end point and the hysteresis region usually in terms of single-particle concepts, such as the spectral function and the quasiparticle weight. In this Letter, we reconsider the critical end point of the metal-insulator transition on the DMFT's two-particle level. We show that the relevant eigenvalue and eigenvector of the nonlocal Bethe-Salpeter kernel in the charge channel provide a unified picture of the hysteresis region and of the critical end point of the Mott transition. In particular, they simultaneously explain the thermodynamics of the hysteresis region and the iterative stability of the DMFT equations. This analysis paves the way for a deeper understanding of phase transitions in correlated materials.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.125.136402</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Bethe-Salpeter equation ; Eigenvalues ; Eigenvectors ; Elementary excitations ; Hysteresis ; Insulators ; Mean field theory ; Metal-insulator transition ; Phase transitions ; Stability analysis</subject><ispartof>Physical review letters, 2020-09, Vol.125 (13), p.1-136402, Article 136402</ispartof><rights>Copyright American Physical Society Sep 25, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b3b39540964291b506dccc61e4776ba4e6782eaa98eefc7c263d2ff1af1f0c113</citedby><cites>FETCH-LOGICAL-c316t-b3b39540964291b506dccc61e4776ba4e6782eaa98eefc7c263d2ff1af1f0c113</cites><orcidid>0000-0003-1574-657X ; 0000-0002-5436-290X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>van Loon, Erik G. C. P.</creatorcontrib><creatorcontrib>Krien, Friedrich</creatorcontrib><creatorcontrib>Katanin, Andrey A.</creatorcontrib><title>Bethe-Salpeter Equation at the Critical End Point of the Mott Transition</title><title>Physical review letters</title><description>Strong repulsive interactions between electrons can lead to a Mott metal-insulator transition. The dynamical mean-field theory (DMFT) explains the critical end point and the hysteresis region usually in terms of single-particle concepts, such as the spectral function and the quasiparticle weight. In this Letter, we reconsider the critical end point of the metal-insulator transition on the DMFT's two-particle level. We show that the relevant eigenvalue and eigenvector of the nonlocal Bethe-Salpeter kernel in the charge channel provide a unified picture of the hysteresis region and of the critical end point of the Mott transition. In particular, they simultaneously explain the thermodynamics of the hysteresis region and the iterative stability of the DMFT equations. This analysis paves the way for a deeper understanding of phase transitions in correlated materials.</description><subject>Bethe-Salpeter equation</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Elementary excitations</subject><subject>Hysteresis</subject><subject>Insulators</subject><subject>Mean field theory</subject><subject>Metal-insulator transition</subject><subject>Phase transitions</subject><subject>Stability analysis</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKAzEURYMoWKu_IAE3bqbmJZlkstRSrVCxaF2HTJrQKdNJTVKhf-_UuhBXd3HPe1wOQtdARgCE3c1X-_TmvmYu5xHQcgRMcEJP0ACIVIUE4KdoQAiDQhEiz9FFSmtCCFBRDdD0weWVK95Nu3XZRTz53JnchA6bjPsCj2OTG2taPOmWeB6aLuPgf5qXkDNeRNOl5nBwic68aZO7-s0h-nicLMbTYvb69Dy-nxWWgchFzWqmSk6U4FRBXRKxtNYKcFxKURvuhKyoM0ZVznkrLRVsSb0H48ETC8CG6Pb4dxvD586lrDdNsq5tTefCLmnKuVJlJcoDevMPXYdd7Pp1PVUCB1kp0VPiSNkYUorO621sNibuNRB9EKz_CNa9YH0UzL4BipNwmg</recordid><startdate>20200925</startdate><enddate>20200925</enddate><creator>van Loon, Erik G. C. P.</creator><creator>Krien, Friedrich</creator><creator>Katanin, Andrey A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1574-657X</orcidid><orcidid>https://orcid.org/0000-0002-5436-290X</orcidid></search><sort><creationdate>20200925</creationdate><title>Bethe-Salpeter Equation at the Critical End Point of the Mott Transition</title><author>van Loon, Erik G. C. P. ; Krien, Friedrich ; Katanin, Andrey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b3b39540964291b506dccc61e4776ba4e6782eaa98eefc7c263d2ff1af1f0c113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bethe-Salpeter equation</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Elementary excitations</topic><topic>Hysteresis</topic><topic>Insulators</topic><topic>Mean field theory</topic><topic>Metal-insulator transition</topic><topic>Phase transitions</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Loon, Erik G. C. P.</creatorcontrib><creatorcontrib>Krien, Friedrich</creatorcontrib><creatorcontrib>Katanin, Andrey A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Loon, Erik G. C. P.</au><au>Krien, Friedrich</au><au>Katanin, Andrey A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bethe-Salpeter Equation at the Critical End Point of the Mott Transition</atitle><jtitle>Physical review letters</jtitle><date>2020-09-25</date><risdate>2020</risdate><volume>125</volume><issue>13</issue><spage>1</spage><epage>136402</epage><pages>1-136402</pages><artnum>136402</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Strong repulsive interactions between electrons can lead to a Mott metal-insulator transition. The dynamical mean-field theory (DMFT) explains the critical end point and the hysteresis region usually in terms of single-particle concepts, such as the spectral function and the quasiparticle weight. In this Letter, we reconsider the critical end point of the metal-insulator transition on the DMFT's two-particle level. We show that the relevant eigenvalue and eigenvector of the nonlocal Bethe-Salpeter kernel in the charge channel provide a unified picture of the hysteresis region and of the critical end point of the Mott transition. In particular, they simultaneously explain the thermodynamics of the hysteresis region and the iterative stability of the DMFT equations. This analysis paves the way for a deeper understanding of phase transitions in correlated materials.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.125.136402</doi><orcidid>https://orcid.org/0000-0003-1574-657X</orcidid><orcidid>https://orcid.org/0000-0002-5436-290X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2020-09, Vol.125 (13), p.1-136402, Article 136402 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2449958651 |
source | Free E-Journal (出版社公開部分のみ); APS: American Physical Society E-Journals (Physics) |
subjects | Bethe-Salpeter equation Eigenvalues Eigenvectors Elementary excitations Hysteresis Insulators Mean field theory Metal-insulator transition Phase transitions Stability analysis |
title | Bethe-Salpeter Equation at the Critical End Point of the Mott Transition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bethe-Salpeter%20Equation%20at%20the%20Critical%20End%20Point%20of%20the%20Mott%20Transition&rft.jtitle=Physical%20review%20letters&rft.au=van%20Loon,%20Erik%20G.%20C.%20P.&rft.date=2020-09-25&rft.volume=125&rft.issue=13&rft.spage=1&rft.epage=136402&rft.pages=1-136402&rft.artnum=136402&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.125.136402&rft_dat=%3Cproquest_cross%3E2449958651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451417896&rft_id=info:pmid/&rfr_iscdi=true |