Using cardiac ionic cell models to interpret clinical data
For over 100 years cardiac electrophysiology has been measured in the clinic. The electrical signals that can be measured span from noninvasive ECG and body surface potentials measurements through to detailed invasive measurements of local tissue electrophysiology. These electrophysiological measure...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. Mechanisms of disease 2021-05, Vol.13 (3), p.e1508-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e1508 |
container_title | Wiley interdisciplinary reviews. Mechanisms of disease |
container_volume | 13 |
creator | Corrado, Cesare Avezzù, Adelisa Lee, Angela W. C. Mendoca Costa, Caroline Roney, Caroline H. Strocchi, Marina Bishop, Martin Niederer, Steven A. |
description | For over 100 years cardiac electrophysiology has been measured in the clinic. The electrical signals that can be measured span from noninvasive ECG and body surface potentials measurements through to detailed invasive measurements of local tissue electrophysiology. These electrophysiological measurements form a crucial component of patient diagnosis and monitoring; however, it remains challenging to quantitatively link changes in clinical electrophysiology measurements to biophysical cellular function. Multi‐scale biophysical computational models represent one solution to this problem. These models provide a formal framework for linking cellular function through to emergent whole organ function and routine clinical diagnostic signals. In this review, we describe recent work on the use of computational models to interpret clinical electrophysiology signals. We review the simulation of human cardiac myocyte electrophysiology in the atria and the ventricles and how these models are being used to link organ scale function to patient disease mechanisms and therapy response in patients receiving implanted defibrillators, \cardiac resynchronisation therapy or suffering from atrial fibrillation and ventricular tachycardia. There is a growing use of multi‐scale biophysical models to interpret clinical data. This allows cardiologists to link clinical observations with cellular mechanisms to better understand cardiopathophysiology and identify novel treatment strategies.
This article is categorized under:
Cardiovascular Diseases > Computational Models
Cardiovascular Diseases > Biomedical Engineering
Cardiovascular Diseases > Molecular and Cellular Physiology
We review the simulation of human cardiac myocyte electrophysiology in the atria and the ventricles and how these models are being used to link organ scale function to patient disease mechanisms and therapy response in patients receiving implanted defibrillators, cardiac resynchronisation therapy, or suffering from atrial fibrillation and ventricular tachycardia. |
doi_str_mv | 10.1002/wsbm.1508 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2449261890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449261890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4548-be22ce1ae15ef943f27cdcde7c23f05f8aaa69e017876fca15d4d4d2d0813c983</originalsourceid><addsrcrecordid>eNp10MtKAzEUBuAgii21C19ABtzoYtpc5pK40-INKi60uAxpckZS5lKTGUrf3oytIoKcRQ7k4-fwI3RK8IRgTKcbv6wmJMX8AA1pJmgsWMYPf-0DNPZ-hYNNGOacHqMBY5jmacqG6Grhbf0eaeWMVTqyTW11pKEso6oxUPqobSJbt-DWDtpIlzb8qzIyqlUn6KhQpYfx_h2hxd3t6-whnj_fP86u57FO0oTHS6BUA1FAUihEwgqaa6MN5JqyAqcFV0plAjDJeZ4VWpHUJGGowZwwLTgboYtd7to1Hx34VlbW9yeqGprOS5okgmaECxzo-R-6ajpXh-skFRgTyphgQV3ulHaN9w4KuXa2Um4rCZZ9p7LvVPadBnu2T-yWFZgf-d1gANMd2NgStv8nybeXm6evyE-CW3-i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900123393</pqid></control><display><type>article</type><title>Using cardiac ionic cell models to interpret clinical data</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Corrado, Cesare ; Avezzù, Adelisa ; Lee, Angela W. C. ; Mendoca Costa, Caroline ; Roney, Caroline H. ; Strocchi, Marina ; Bishop, Martin ; Niederer, Steven A.</creator><creatorcontrib>Corrado, Cesare ; Avezzù, Adelisa ; Lee, Angela W. C. ; Mendoca Costa, Caroline ; Roney, Caroline H. ; Strocchi, Marina ; Bishop, Martin ; Niederer, Steven A.</creatorcontrib><description>For over 100 years cardiac electrophysiology has been measured in the clinic. The electrical signals that can be measured span from noninvasive ECG and body surface potentials measurements through to detailed invasive measurements of local tissue electrophysiology. These electrophysiological measurements form a crucial component of patient diagnosis and monitoring; however, it remains challenging to quantitatively link changes in clinical electrophysiology measurements to biophysical cellular function. Multi‐scale biophysical computational models represent one solution to this problem. These models provide a formal framework for linking cellular function through to emergent whole organ function and routine clinical diagnostic signals. In this review, we describe recent work on the use of computational models to interpret clinical electrophysiology signals. We review the simulation of human cardiac myocyte electrophysiology in the atria and the ventricles and how these models are being used to link organ scale function to patient disease mechanisms and therapy response in patients receiving implanted defibrillators, \cardiac resynchronisation therapy or suffering from atrial fibrillation and ventricular tachycardia. There is a growing use of multi‐scale biophysical models to interpret clinical data. This allows cardiologists to link clinical observations with cellular mechanisms to better understand cardiopathophysiology and identify novel treatment strategies.
This article is categorized under:
Cardiovascular Diseases > Computational Models
Cardiovascular Diseases > Biomedical Engineering
Cardiovascular Diseases > Molecular and Cellular Physiology
We review the simulation of human cardiac myocyte electrophysiology in the atria and the ventricles and how these models are being used to link organ scale function to patient disease mechanisms and therapy response in patients receiving implanted defibrillators, cardiac resynchronisation therapy, or suffering from atrial fibrillation and ventricular tachycardia.</description><identifier>ISSN: 2692-9368</identifier><identifier>EISSN: 2692-9368</identifier><identifier>DOI: 10.1002/wsbm.1508</identifier><identifier>PMID: 33027553</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Atria ; Atrial Fibrillation ; Biomedical engineering ; cardiac ; Cardiovascular diseases ; Cell culture ; Computer applications ; EKG ; Electrophysiological Phenomena ; Electrophysiology ; Heart Atria ; Heart Ventricles ; Humans ; Mathematical models ; multi‐scale ; Myocytes ; Myocytes, Cardiac ; Patients ; Tachycardia ; Ventricle</subject><ispartof>Wiley interdisciplinary reviews. Mechanisms of disease, 2021-05, Vol.13 (3), p.e1508-n/a</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC.</rights><rights>2020 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals LLC.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4548-be22ce1ae15ef943f27cdcde7c23f05f8aaa69e017876fca15d4d4d2d0813c983</citedby><cites>FETCH-LOGICAL-c4548-be22ce1ae15ef943f27cdcde7c23f05f8aaa69e017876fca15d4d4d2d0813c983</cites><orcidid>0000-0002-8914-8735 ; 0000-0002-4612-6982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwsbm.1508$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwsbm.1508$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33027553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Corrado, Cesare</creatorcontrib><creatorcontrib>Avezzù, Adelisa</creatorcontrib><creatorcontrib>Lee, Angela W. C.</creatorcontrib><creatorcontrib>Mendoca Costa, Caroline</creatorcontrib><creatorcontrib>Roney, Caroline H.</creatorcontrib><creatorcontrib>Strocchi, Marina</creatorcontrib><creatorcontrib>Bishop, Martin</creatorcontrib><creatorcontrib>Niederer, Steven A.</creatorcontrib><title>Using cardiac ionic cell models to interpret clinical data</title><title>Wiley interdisciplinary reviews. Mechanisms of disease</title><addtitle>WIREs Mech Dis</addtitle><description>For over 100 years cardiac electrophysiology has been measured in the clinic. The electrical signals that can be measured span from noninvasive ECG and body surface potentials measurements through to detailed invasive measurements of local tissue electrophysiology. These electrophysiological measurements form a crucial component of patient diagnosis and monitoring; however, it remains challenging to quantitatively link changes in clinical electrophysiology measurements to biophysical cellular function. Multi‐scale biophysical computational models represent one solution to this problem. These models provide a formal framework for linking cellular function through to emergent whole organ function and routine clinical diagnostic signals. In this review, we describe recent work on the use of computational models to interpret clinical electrophysiology signals. We review the simulation of human cardiac myocyte electrophysiology in the atria and the ventricles and how these models are being used to link organ scale function to patient disease mechanisms and therapy response in patients receiving implanted defibrillators, \cardiac resynchronisation therapy or suffering from atrial fibrillation and ventricular tachycardia. There is a growing use of multi‐scale biophysical models to interpret clinical data. This allows cardiologists to link clinical observations with cellular mechanisms to better understand cardiopathophysiology and identify novel treatment strategies.
This article is categorized under:
Cardiovascular Diseases > Computational Models
Cardiovascular Diseases > Biomedical Engineering
Cardiovascular Diseases > Molecular and Cellular Physiology
We review the simulation of human cardiac myocyte electrophysiology in the atria and the ventricles and how these models are being used to link organ scale function to patient disease mechanisms and therapy response in patients receiving implanted defibrillators, cardiac resynchronisation therapy, or suffering from atrial fibrillation and ventricular tachycardia.</description><subject>Atria</subject><subject>Atrial Fibrillation</subject><subject>Biomedical engineering</subject><subject>cardiac</subject><subject>Cardiovascular diseases</subject><subject>Cell culture</subject><subject>Computer applications</subject><subject>EKG</subject><subject>Electrophysiological Phenomena</subject><subject>Electrophysiology</subject><subject>Heart Atria</subject><subject>Heart Ventricles</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>multi‐scale</subject><subject>Myocytes</subject><subject>Myocytes, Cardiac</subject><subject>Patients</subject><subject>Tachycardia</subject><subject>Ventricle</subject><issn>2692-9368</issn><issn>2692-9368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp10MtKAzEUBuAgii21C19ABtzoYtpc5pK40-INKi60uAxpckZS5lKTGUrf3oytIoKcRQ7k4-fwI3RK8IRgTKcbv6wmJMX8AA1pJmgsWMYPf-0DNPZ-hYNNGOacHqMBY5jmacqG6Grhbf0eaeWMVTqyTW11pKEso6oxUPqobSJbt-DWDtpIlzb8qzIyqlUn6KhQpYfx_h2hxd3t6-whnj_fP86u57FO0oTHS6BUA1FAUihEwgqaa6MN5JqyAqcFV0plAjDJeZ4VWpHUJGGowZwwLTgboYtd7to1Hx34VlbW9yeqGprOS5okgmaECxzo-R-6ajpXh-skFRgTyphgQV3ulHaN9w4KuXa2Um4rCZZ9p7LvVPadBnu2T-yWFZgf-d1gANMd2NgStv8nybeXm6evyE-CW3-i</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Corrado, Cesare</creator><creator>Avezzù, Adelisa</creator><creator>Lee, Angela W. C.</creator><creator>Mendoca Costa, Caroline</creator><creator>Roney, Caroline H.</creator><creator>Strocchi, Marina</creator><creator>Bishop, Martin</creator><creator>Niederer, Steven A.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8914-8735</orcidid><orcidid>https://orcid.org/0000-0002-4612-6982</orcidid></search><sort><creationdate>202105</creationdate><title>Using cardiac ionic cell models to interpret clinical data</title><author>Corrado, Cesare ; Avezzù, Adelisa ; Lee, Angela W. C. ; Mendoca Costa, Caroline ; Roney, Caroline H. ; Strocchi, Marina ; Bishop, Martin ; Niederer, Steven A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4548-be22ce1ae15ef943f27cdcde7c23f05f8aaa69e017876fca15d4d4d2d0813c983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atria</topic><topic>Atrial Fibrillation</topic><topic>Biomedical engineering</topic><topic>cardiac</topic><topic>Cardiovascular diseases</topic><topic>Cell culture</topic><topic>Computer applications</topic><topic>EKG</topic><topic>Electrophysiological Phenomena</topic><topic>Electrophysiology</topic><topic>Heart Atria</topic><topic>Heart Ventricles</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>multi‐scale</topic><topic>Myocytes</topic><topic>Myocytes, Cardiac</topic><topic>Patients</topic><topic>Tachycardia</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corrado, Cesare</creatorcontrib><creatorcontrib>Avezzù, Adelisa</creatorcontrib><creatorcontrib>Lee, Angela W. C.</creatorcontrib><creatorcontrib>Mendoca Costa, Caroline</creatorcontrib><creatorcontrib>Roney, Caroline H.</creatorcontrib><creatorcontrib>Strocchi, Marina</creatorcontrib><creatorcontrib>Bishop, Martin</creatorcontrib><creatorcontrib>Niederer, Steven A.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Wiley interdisciplinary reviews. Mechanisms of disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corrado, Cesare</au><au>Avezzù, Adelisa</au><au>Lee, Angela W. C.</au><au>Mendoca Costa, Caroline</au><au>Roney, Caroline H.</au><au>Strocchi, Marina</au><au>Bishop, Martin</au><au>Niederer, Steven A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using cardiac ionic cell models to interpret clinical data</atitle><jtitle>Wiley interdisciplinary reviews. Mechanisms of disease</jtitle><addtitle>WIREs Mech Dis</addtitle><date>2021-05</date><risdate>2021</risdate><volume>13</volume><issue>3</issue><spage>e1508</spage><epage>n/a</epage><pages>e1508-n/a</pages><issn>2692-9368</issn><eissn>2692-9368</eissn><abstract>For over 100 years cardiac electrophysiology has been measured in the clinic. The electrical signals that can be measured span from noninvasive ECG and body surface potentials measurements through to detailed invasive measurements of local tissue electrophysiology. These electrophysiological measurements form a crucial component of patient diagnosis and monitoring; however, it remains challenging to quantitatively link changes in clinical electrophysiology measurements to biophysical cellular function. Multi‐scale biophysical computational models represent one solution to this problem. These models provide a formal framework for linking cellular function through to emergent whole organ function and routine clinical diagnostic signals. In this review, we describe recent work on the use of computational models to interpret clinical electrophysiology signals. We review the simulation of human cardiac myocyte electrophysiology in the atria and the ventricles and how these models are being used to link organ scale function to patient disease mechanisms and therapy response in patients receiving implanted defibrillators, \cardiac resynchronisation therapy or suffering from atrial fibrillation and ventricular tachycardia. There is a growing use of multi‐scale biophysical models to interpret clinical data. This allows cardiologists to link clinical observations with cellular mechanisms to better understand cardiopathophysiology and identify novel treatment strategies.
This article is categorized under:
Cardiovascular Diseases > Computational Models
Cardiovascular Diseases > Biomedical Engineering
Cardiovascular Diseases > Molecular and Cellular Physiology
We review the simulation of human cardiac myocyte electrophysiology in the atria and the ventricles and how these models are being used to link organ scale function to patient disease mechanisms and therapy response in patients receiving implanted defibrillators, cardiac resynchronisation therapy, or suffering from atrial fibrillation and ventricular tachycardia.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>33027553</pmid><doi>10.1002/wsbm.1508</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8914-8735</orcidid><orcidid>https://orcid.org/0000-0002-4612-6982</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2692-9368 |
ispartof | Wiley interdisciplinary reviews. Mechanisms of disease, 2021-05, Vol.13 (3), p.e1508-n/a |
issn | 2692-9368 2692-9368 |
language | eng |
recordid | cdi_proquest_miscellaneous_2449261890 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Atria Atrial Fibrillation Biomedical engineering cardiac Cardiovascular diseases Cell culture Computer applications EKG Electrophysiological Phenomena Electrophysiology Heart Atria Heart Ventricles Humans Mathematical models multi‐scale Myocytes Myocytes, Cardiac Patients Tachycardia Ventricle |
title | Using cardiac ionic cell models to interpret clinical data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20cardiac%20ionic%20cell%20models%20to%20interpret%20clinical%20data&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Mechanisms%20of%20disease&rft.au=Corrado,%20Cesare&rft.date=2021-05&rft.volume=13&rft.issue=3&rft.spage=e1508&rft.epage=n/a&rft.pages=e1508-n/a&rft.issn=2692-9368&rft.eissn=2692-9368&rft_id=info:doi/10.1002/wsbm.1508&rft_dat=%3Cproquest_cross%3E2449261890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900123393&rft_id=info:pmid/33027553&rfr_iscdi=true |