Sensitivity analysis of FDG PET tumor voxel cluster radiomics and dosimetry for predicting mid-chemoradiation regional response of locally advanced lung cancer

We investigated the sensitivity of regional tumor response prediction to variability in voxel clustering techniques, imaging features, and machine learning algorithms in 25 patients with locally advanced non-small cell lung cancer (LA-NSCLC) enrolled on the FLARE-RT clinical trial. Metabolic tumor v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2020-10, Vol.65 (20), p.205007-205007
Hauptverfasser: Duan, Chunyan, Chaovalitwongse, W Art, Bai, Fangyun, Hippe, Daniel S, Wang, Shouyi, Thammasorn, Phawis, Pierce, Larry A, Liu, Xiao, You, Jianxin, Miyaoka, Robert S, Vesselle, Hubert J, Kinahan, Paul E, Rengan, Ramesh, Zeng, Jing, Bowen, Stephen R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 205007
container_issue 20
container_start_page 205007
container_title Physics in medicine & biology
container_volume 65
creator Duan, Chunyan
Chaovalitwongse, W Art
Bai, Fangyun
Hippe, Daniel S
Wang, Shouyi
Thammasorn, Phawis
Pierce, Larry A
Liu, Xiao
You, Jianxin
Miyaoka, Robert S
Vesselle, Hubert J
Kinahan, Paul E
Rengan, Ramesh
Zeng, Jing
Bowen, Stephen R
description We investigated the sensitivity of regional tumor response prediction to variability in voxel clustering techniques, imaging features, and machine learning algorithms in 25 patients with locally advanced non-small cell lung cancer (LA-NSCLC) enrolled on the FLARE-RT clinical trial. Metabolic tumor volumes (MTV) from pre-chemoradiation (PETpre) and mid-chemoradiation fluorodeoxyglucose-positron emission tomography (FDG PET) images (PETmid) were subdivided into K-means or hierarchical voxel clusters by standardized uptake values (SUV) and 3D-positions. MTV cluster separability was evaluated by CH index, and morphologic changes were captured by Dice similarity and centroid Euclidean distance. PETpre conventional features included SUVmean, MTV/MTV cluster size, and mean radiation dose. PETpre radiomics consisted of 41 intensity histogram and 3D texture features (PET Oncology Radiomics Test Suite) extracted from MTV or MTV clusters. Machine learning models (multiple linear regression, support vector regression, logistic regression, support vector machines) of conventional features or radiomic features were constructed to predict PETmid response. Leave-one-out-cross-validated root-mean-squared-error (RMSE) for continuous response regression (ΔSUVmean) and area-under-receiver-operating-characteristic-curve (AUC) for binary response classification were calculated. K-means MTV 2-clusters (MTVhi, MTVlo) achieved maximum CH index separability (Friedman p < 0.001). Between PETpre and PETmid, MTV cluster pairs overlapped (Dice 0.70-0.87) and migrated 0.6-1.1 cm. PETmid ΔSUVmean response prediction was superior in MTV and MTVlo (RMSE = 0.17-0.21) compared to MTVhi (RMSE = 0.42-0.52, Friedman p < 0.001). PETmid ΔSUVmean response class prediction performance trended higher in MTVlo (AUC = 0.83-0.88) compared to MTVhi (AUC = 0.44-0.58, Friedman p = 0.052). Models were more sensitive to MTV/MTV cluster regions (Friedman p = 0.026) than feature sets/algorithms (Wilcoxon signed-rank p = 0.36). Top-ranked radiomic features included GLZSM-LZHGE (large-zone-high-SUV), GTSDM-CP (cluster-prominence), GTSDM-CS (cluster-shade) and NGTDM-CNT (contrast). Top-ranked features were consistent between MTVhi and MTVlo cluster pairs but varied between MTVhi-MTVlo clusters, reflecting distinct regional radiomic phenotypes. Variability in tumor voxel cluster response prediction can inform robust radiomic target definition for risk-adaptive chemoradiation in patients with LA-NSCLC. FLARE-RT tr
doi_str_mv 10.1088/1361-6560/abb0c7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2449253635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449253635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-e77153e98ca888d0a6a0be22b9a75603176e0b7d555ad8dabd86167a56238ad43</originalsourceid><addsrcrecordid>eNp1UUtrFTEUDqLYa3XvSrJ04dhkMnnMRpDaVqGgYF2HM0nmNiUzGZOZS--v8a-a4dargsKBc8j5HuF8CL2k5C0lSp1RJmgluCBn0HXEyEdoc3x6jDaEMFq1lPMT9CznO0IoVXXzFJ0wRmpJRLNBP766MfvZ7_y8xzBC2Gefcezx5Ycr_OXiBs_LEBPexXsXsAlLnl3CCayPgze5MCy2MfvBzWmP-4KckrPezH7c4sHbyty6wi94mH0ccXLb0iCUIU9xzG61CtFACMXe7mA0zuKwFLZZ5_QcPekhZPfioZ-ib5cXN-cfq-vPV5_O319XphFirpyUlDPXKgNKKUtAAOlcXXctyHILRqVwpJOWcw5WWeisElRI4KJmCmzDTtG7g-60dIOzxo1zgqCn5AdIex3B6783o7_V27jTkresVaIIvH4QSPH74vKsB5-NCwFGF5es66Zpa84E4wVKDlCTYs7J9UcbSvSaq15D1GuI-pBrobz683tHwq8gf9v7OOm7uKRy5KynoSsyuialOCFST7Yv0Df_gP7X-ieVeL79</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449253635</pqid></control><display><type>article</type><title>Sensitivity analysis of FDG PET tumor voxel cluster radiomics and dosimetry for predicting mid-chemoradiation regional response of locally advanced lung cancer</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><source>MEDLINE</source><creator>Duan, Chunyan ; Chaovalitwongse, W Art ; Bai, Fangyun ; Hippe, Daniel S ; Wang, Shouyi ; Thammasorn, Phawis ; Pierce, Larry A ; Liu, Xiao ; You, Jianxin ; Miyaoka, Robert S ; Vesselle, Hubert J ; Kinahan, Paul E ; Rengan, Ramesh ; Zeng, Jing ; Bowen, Stephen R</creator><creatorcontrib>Duan, Chunyan ; Chaovalitwongse, W Art ; Bai, Fangyun ; Hippe, Daniel S ; Wang, Shouyi ; Thammasorn, Phawis ; Pierce, Larry A ; Liu, Xiao ; You, Jianxin ; Miyaoka, Robert S ; Vesselle, Hubert J ; Kinahan, Paul E ; Rengan, Ramesh ; Zeng, Jing ; Bowen, Stephen R</creatorcontrib><description>We investigated the sensitivity of regional tumor response prediction to variability in voxel clustering techniques, imaging features, and machine learning algorithms in 25 patients with locally advanced non-small cell lung cancer (LA-NSCLC) enrolled on the FLARE-RT clinical trial. Metabolic tumor volumes (MTV) from pre-chemoradiation (PETpre) and mid-chemoradiation fluorodeoxyglucose-positron emission tomography (FDG PET) images (PETmid) were subdivided into K-means or hierarchical voxel clusters by standardized uptake values (SUV) and 3D-positions. MTV cluster separability was evaluated by CH index, and morphologic changes were captured by Dice similarity and centroid Euclidean distance. PETpre conventional features included SUVmean, MTV/MTV cluster size, and mean radiation dose. PETpre radiomics consisted of 41 intensity histogram and 3D texture features (PET Oncology Radiomics Test Suite) extracted from MTV or MTV clusters. Machine learning models (multiple linear regression, support vector regression, logistic regression, support vector machines) of conventional features or radiomic features were constructed to predict PETmid response. Leave-one-out-cross-validated root-mean-squared-error (RMSE) for continuous response regression (ΔSUVmean) and area-under-receiver-operating-characteristic-curve (AUC) for binary response classification were calculated. K-means MTV 2-clusters (MTVhi, MTVlo) achieved maximum CH index separability (Friedman p &lt; 0.001). Between PETpre and PETmid, MTV cluster pairs overlapped (Dice 0.70-0.87) and migrated 0.6-1.1 cm. PETmid ΔSUVmean response prediction was superior in MTV and MTVlo (RMSE = 0.17-0.21) compared to MTVhi (RMSE = 0.42-0.52, Friedman p &lt; 0.001). PETmid ΔSUVmean response class prediction performance trended higher in MTVlo (AUC = 0.83-0.88) compared to MTVhi (AUC = 0.44-0.58, Friedman p = 0.052). Models were more sensitive to MTV/MTV cluster regions (Friedman p = 0.026) than feature sets/algorithms (Wilcoxon signed-rank p = 0.36). Top-ranked radiomic features included GLZSM-LZHGE (large-zone-high-SUV), GTSDM-CP (cluster-prominence), GTSDM-CS (cluster-shade) and NGTDM-CNT (contrast). Top-ranked features were consistent between MTVhi and MTVlo cluster pairs but varied between MTVhi-MTVlo clusters, reflecting distinct regional radiomic phenotypes. Variability in tumor voxel cluster response prediction can inform robust radiomic target definition for risk-adaptive chemoradiation in patients with LA-NSCLC. FLARE-RT trial: NCT02773238.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/abb0c7</identifier><identifier>PMID: 33027064</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Adult ; Aged ; Algorithms ; cancer response ; Carcinoma, Non-Small-Cell Lung - pathology ; Chemoradiotherapy ; Female ; Fluorodeoxyglucose F18 ; Humans ; Image Processing, Computer-Assisted ; Longitudinal Studies ; Lung Neoplasms - diagnostic imaging ; Lung Neoplasms - pathology ; Lung Neoplasms - therapy ; machine learning ; Male ; Middle Aged ; Positron-Emission Tomography ; Radiometry ; radiomics ; ROC Curve ; sensitivity analysis ; Treatment Outcome ; Tumor Burden ; tumor voxel clustering</subject><ispartof>Physics in medicine &amp; biology, 2020-10, Vol.65 (20), p.205007-205007</ispartof><rights>2020 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-e77153e98ca888d0a6a0be22b9a75603176e0b7d555ad8dabd86167a56238ad43</citedby><cites>FETCH-LOGICAL-c466t-e77153e98ca888d0a6a0be22b9a75603176e0b7d555ad8dabd86167a56238ad43</cites><orcidid>0000-0003-2427-4404 ; 0000-0001-7581-770X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/abb0c7/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33027064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duan, Chunyan</creatorcontrib><creatorcontrib>Chaovalitwongse, W Art</creatorcontrib><creatorcontrib>Bai, Fangyun</creatorcontrib><creatorcontrib>Hippe, Daniel S</creatorcontrib><creatorcontrib>Wang, Shouyi</creatorcontrib><creatorcontrib>Thammasorn, Phawis</creatorcontrib><creatorcontrib>Pierce, Larry A</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>You, Jianxin</creatorcontrib><creatorcontrib>Miyaoka, Robert S</creatorcontrib><creatorcontrib>Vesselle, Hubert J</creatorcontrib><creatorcontrib>Kinahan, Paul E</creatorcontrib><creatorcontrib>Rengan, Ramesh</creatorcontrib><creatorcontrib>Zeng, Jing</creatorcontrib><creatorcontrib>Bowen, Stephen R</creatorcontrib><title>Sensitivity analysis of FDG PET tumor voxel cluster radiomics and dosimetry for predicting mid-chemoradiation regional response of locally advanced lung cancer</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>We investigated the sensitivity of regional tumor response prediction to variability in voxel clustering techniques, imaging features, and machine learning algorithms in 25 patients with locally advanced non-small cell lung cancer (LA-NSCLC) enrolled on the FLARE-RT clinical trial. Metabolic tumor volumes (MTV) from pre-chemoradiation (PETpre) and mid-chemoradiation fluorodeoxyglucose-positron emission tomography (FDG PET) images (PETmid) were subdivided into K-means or hierarchical voxel clusters by standardized uptake values (SUV) and 3D-positions. MTV cluster separability was evaluated by CH index, and morphologic changes were captured by Dice similarity and centroid Euclidean distance. PETpre conventional features included SUVmean, MTV/MTV cluster size, and mean radiation dose. PETpre radiomics consisted of 41 intensity histogram and 3D texture features (PET Oncology Radiomics Test Suite) extracted from MTV or MTV clusters. Machine learning models (multiple linear regression, support vector regression, logistic regression, support vector machines) of conventional features or radiomic features were constructed to predict PETmid response. Leave-one-out-cross-validated root-mean-squared-error (RMSE) for continuous response regression (ΔSUVmean) and area-under-receiver-operating-characteristic-curve (AUC) for binary response classification were calculated. K-means MTV 2-clusters (MTVhi, MTVlo) achieved maximum CH index separability (Friedman p &lt; 0.001). Between PETpre and PETmid, MTV cluster pairs overlapped (Dice 0.70-0.87) and migrated 0.6-1.1 cm. PETmid ΔSUVmean response prediction was superior in MTV and MTVlo (RMSE = 0.17-0.21) compared to MTVhi (RMSE = 0.42-0.52, Friedman p &lt; 0.001). PETmid ΔSUVmean response class prediction performance trended higher in MTVlo (AUC = 0.83-0.88) compared to MTVhi (AUC = 0.44-0.58, Friedman p = 0.052). Models were more sensitive to MTV/MTV cluster regions (Friedman p = 0.026) than feature sets/algorithms (Wilcoxon signed-rank p = 0.36). Top-ranked radiomic features included GLZSM-LZHGE (large-zone-high-SUV), GTSDM-CP (cluster-prominence), GTSDM-CS (cluster-shade) and NGTDM-CNT (contrast). Top-ranked features were consistent between MTVhi and MTVlo cluster pairs but varied between MTVhi-MTVlo clusters, reflecting distinct regional radiomic phenotypes. Variability in tumor voxel cluster response prediction can inform robust radiomic target definition for risk-adaptive chemoradiation in patients with LA-NSCLC. FLARE-RT trial: NCT02773238.</description><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>cancer response</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Chemoradiotherapy</subject><subject>Female</subject><subject>Fluorodeoxyglucose F18</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Longitudinal Studies</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Lung Neoplasms - pathology</subject><subject>Lung Neoplasms - therapy</subject><subject>machine learning</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Positron-Emission Tomography</subject><subject>Radiometry</subject><subject>radiomics</subject><subject>ROC Curve</subject><subject>sensitivity analysis</subject><subject>Treatment Outcome</subject><subject>Tumor Burden</subject><subject>tumor voxel clustering</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1UUtrFTEUDqLYa3XvSrJ04dhkMnnMRpDaVqGgYF2HM0nmNiUzGZOZS--v8a-a4dargsKBc8j5HuF8CL2k5C0lSp1RJmgluCBn0HXEyEdoc3x6jDaEMFq1lPMT9CznO0IoVXXzFJ0wRmpJRLNBP766MfvZ7_y8xzBC2Gefcezx5Ycr_OXiBs_LEBPexXsXsAlLnl3CCayPgze5MCy2MfvBzWmP-4KckrPezH7c4sHbyty6wi94mH0ccXLb0iCUIU9xzG61CtFACMXe7mA0zuKwFLZZ5_QcPekhZPfioZ-ib5cXN-cfq-vPV5_O319XphFirpyUlDPXKgNKKUtAAOlcXXctyHILRqVwpJOWcw5WWeisElRI4KJmCmzDTtG7g-60dIOzxo1zgqCn5AdIex3B6783o7_V27jTkresVaIIvH4QSPH74vKsB5-NCwFGF5es66Zpa84E4wVKDlCTYs7J9UcbSvSaq15D1GuI-pBrobz683tHwq8gf9v7OOm7uKRy5KynoSsyuialOCFST7Yv0Df_gP7X-ieVeL79</recordid><startdate>20201007</startdate><enddate>20201007</enddate><creator>Duan, Chunyan</creator><creator>Chaovalitwongse, W Art</creator><creator>Bai, Fangyun</creator><creator>Hippe, Daniel S</creator><creator>Wang, Shouyi</creator><creator>Thammasorn, Phawis</creator><creator>Pierce, Larry A</creator><creator>Liu, Xiao</creator><creator>You, Jianxin</creator><creator>Miyaoka, Robert S</creator><creator>Vesselle, Hubert J</creator><creator>Kinahan, Paul E</creator><creator>Rengan, Ramesh</creator><creator>Zeng, Jing</creator><creator>Bowen, Stephen R</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2427-4404</orcidid><orcidid>https://orcid.org/0000-0001-7581-770X</orcidid></search><sort><creationdate>20201007</creationdate><title>Sensitivity analysis of FDG PET tumor voxel cluster radiomics and dosimetry for predicting mid-chemoradiation regional response of locally advanced lung cancer</title><author>Duan, Chunyan ; Chaovalitwongse, W Art ; Bai, Fangyun ; Hippe, Daniel S ; Wang, Shouyi ; Thammasorn, Phawis ; Pierce, Larry A ; Liu, Xiao ; You, Jianxin ; Miyaoka, Robert S ; Vesselle, Hubert J ; Kinahan, Paul E ; Rengan, Ramesh ; Zeng, Jing ; Bowen, Stephen R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-e77153e98ca888d0a6a0be22b9a75603176e0b7d555ad8dabd86167a56238ad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>cancer response</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Chemoradiotherapy</topic><topic>Female</topic><topic>Fluorodeoxyglucose F18</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Longitudinal Studies</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Lung Neoplasms - pathology</topic><topic>Lung Neoplasms - therapy</topic><topic>machine learning</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Positron-Emission Tomography</topic><topic>Radiometry</topic><topic>radiomics</topic><topic>ROC Curve</topic><topic>sensitivity analysis</topic><topic>Treatment Outcome</topic><topic>Tumor Burden</topic><topic>tumor voxel clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Chunyan</creatorcontrib><creatorcontrib>Chaovalitwongse, W Art</creatorcontrib><creatorcontrib>Bai, Fangyun</creatorcontrib><creatorcontrib>Hippe, Daniel S</creatorcontrib><creatorcontrib>Wang, Shouyi</creatorcontrib><creatorcontrib>Thammasorn, Phawis</creatorcontrib><creatorcontrib>Pierce, Larry A</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>You, Jianxin</creatorcontrib><creatorcontrib>Miyaoka, Robert S</creatorcontrib><creatorcontrib>Vesselle, Hubert J</creatorcontrib><creatorcontrib>Kinahan, Paul E</creatorcontrib><creatorcontrib>Rengan, Ramesh</creatorcontrib><creatorcontrib>Zeng, Jing</creatorcontrib><creatorcontrib>Bowen, Stephen R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Chunyan</au><au>Chaovalitwongse, W Art</au><au>Bai, Fangyun</au><au>Hippe, Daniel S</au><au>Wang, Shouyi</au><au>Thammasorn, Phawis</au><au>Pierce, Larry A</au><au>Liu, Xiao</au><au>You, Jianxin</au><au>Miyaoka, Robert S</au><au>Vesselle, Hubert J</au><au>Kinahan, Paul E</au><au>Rengan, Ramesh</au><au>Zeng, Jing</au><au>Bowen, Stephen R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity analysis of FDG PET tumor voxel cluster radiomics and dosimetry for predicting mid-chemoradiation regional response of locally advanced lung cancer</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2020-10-07</date><risdate>2020</risdate><volume>65</volume><issue>20</issue><spage>205007</spage><epage>205007</epage><pages>205007-205007</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>We investigated the sensitivity of regional tumor response prediction to variability in voxel clustering techniques, imaging features, and machine learning algorithms in 25 patients with locally advanced non-small cell lung cancer (LA-NSCLC) enrolled on the FLARE-RT clinical trial. Metabolic tumor volumes (MTV) from pre-chemoradiation (PETpre) and mid-chemoradiation fluorodeoxyglucose-positron emission tomography (FDG PET) images (PETmid) were subdivided into K-means or hierarchical voxel clusters by standardized uptake values (SUV) and 3D-positions. MTV cluster separability was evaluated by CH index, and morphologic changes were captured by Dice similarity and centroid Euclidean distance. PETpre conventional features included SUVmean, MTV/MTV cluster size, and mean radiation dose. PETpre radiomics consisted of 41 intensity histogram and 3D texture features (PET Oncology Radiomics Test Suite) extracted from MTV or MTV clusters. Machine learning models (multiple linear regression, support vector regression, logistic regression, support vector machines) of conventional features or radiomic features were constructed to predict PETmid response. Leave-one-out-cross-validated root-mean-squared-error (RMSE) for continuous response regression (ΔSUVmean) and area-under-receiver-operating-characteristic-curve (AUC) for binary response classification were calculated. K-means MTV 2-clusters (MTVhi, MTVlo) achieved maximum CH index separability (Friedman p &lt; 0.001). Between PETpre and PETmid, MTV cluster pairs overlapped (Dice 0.70-0.87) and migrated 0.6-1.1 cm. PETmid ΔSUVmean response prediction was superior in MTV and MTVlo (RMSE = 0.17-0.21) compared to MTVhi (RMSE = 0.42-0.52, Friedman p &lt; 0.001). PETmid ΔSUVmean response class prediction performance trended higher in MTVlo (AUC = 0.83-0.88) compared to MTVhi (AUC = 0.44-0.58, Friedman p = 0.052). Models were more sensitive to MTV/MTV cluster regions (Friedman p = 0.026) than feature sets/algorithms (Wilcoxon signed-rank p = 0.36). Top-ranked radiomic features included GLZSM-LZHGE (large-zone-high-SUV), GTSDM-CP (cluster-prominence), GTSDM-CS (cluster-shade) and NGTDM-CNT (contrast). Top-ranked features were consistent between MTVhi and MTVlo cluster pairs but varied between MTVhi-MTVlo clusters, reflecting distinct regional radiomic phenotypes. Variability in tumor voxel cluster response prediction can inform robust radiomic target definition for risk-adaptive chemoradiation in patients with LA-NSCLC. FLARE-RT trial: NCT02773238.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>33027064</pmid><doi>10.1088/1361-6560/abb0c7</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2427-4404</orcidid><orcidid>https://orcid.org/0000-0001-7581-770X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2020-10, Vol.65 (20), p.205007-205007
issn 0031-9155
1361-6560
1361-6560
language eng
recordid cdi_proquest_miscellaneous_2449253635
source HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals; MEDLINE
subjects Adult
Aged
Algorithms
cancer response
Carcinoma, Non-Small-Cell Lung - pathology
Chemoradiotherapy
Female
Fluorodeoxyglucose F18
Humans
Image Processing, Computer-Assisted
Longitudinal Studies
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - pathology
Lung Neoplasms - therapy
machine learning
Male
Middle Aged
Positron-Emission Tomography
Radiometry
radiomics
ROC Curve
sensitivity analysis
Treatment Outcome
Tumor Burden
tumor voxel clustering
title Sensitivity analysis of FDG PET tumor voxel cluster radiomics and dosimetry for predicting mid-chemoradiation regional response of locally advanced lung cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20analysis%20of%20FDG%20PET%20tumor%20voxel%20cluster%20radiomics%20and%20dosimetry%20for%20predicting%20mid-chemoradiation%20regional%20response%20of%20locally%20advanced%20lung%20cancer&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Duan,%20Chunyan&rft.date=2020-10-07&rft.volume=65&rft.issue=20&rft.spage=205007&rft.epage=205007&rft.pages=205007-205007&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/abb0c7&rft_dat=%3Cproquest_pubme%3E2449253635%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449253635&rft_id=info:pmid/33027064&rfr_iscdi=true