A Testing Environment for Continuous Colormaps

Many computer science disciplines (e.g., combinatorial optimization, natural language processing, and information retrieval) use standard or established test suites for evaluating algorithms. In visualization, similar approaches have been adopted in some areas (e.g., volume visualization), while use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2021-02, Vol.27 (2), p.1043-1053
Hauptverfasser: Nardini, P., Chen, M., Bujack, R., Bottinger, M., Scheuermann, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many computer science disciplines (e.g., combinatorial optimization, natural language processing, and information retrieval) use standard or established test suites for evaluating algorithms. In visualization, similar approaches have been adopted in some areas (e.g., volume visualization), while user testimonies and empirical studies have been the dominant means of evaluation in most other areas, such as designing colormaps. In this paper, we propose to establish a test suite for evaluating the design of colormaps. With such a suite, the users can observe the effects when different continuous colormaps are applied to planar scalar fields that may exhibit various characteristic features, such as jumps, local extrema, ridge or valley lines, different distributions of scalar values, different gradients, different signal frequencies, different levels of noise, and so on. The suite also includes an expansible collection of real-world data sets including the most popular data for colormap testing in the visualization literature. The test suite has been integrated into a web-based application for creating continuous colormaps (https://ccctool.com/), facilitating close inter-operation between design and evaluation processes. This new facility complements traditional evaluation methods such as user testimonies and empirical studies.
ISSN:1077-2626
1941-0506
DOI:10.1109/TVCG.2020.3028955