Tert -butylhydroquinone augments Nrf2-dependent resilience against oxidative stress and improves survival of ventilator-induced lung injury in mice

Oxidative stress caused by mechanical ventilation contributes to the pathophysiology of ventilator-induced lung injury (VILI). A key mechanism maintaining redox balance is the upregulation of nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant gene expression. We tested whether...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Lung cellular and molecular physiology 2021-01, Vol.320 (1), p.L17-L28
Hauptverfasser: Veskemaa, Lilly, Graw, Jan A, Pickerodt, Philipp A, Taher, Mahdi, Boemke, Willehad, González-López, Adrián, Francis, Roland C E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page L28
container_issue 1
container_start_page L17
container_title American journal of physiology. Lung cellular and molecular physiology
container_volume 320
creator Veskemaa, Lilly
Graw, Jan A
Pickerodt, Philipp A
Taher, Mahdi
Boemke, Willehad
González-López, Adrián
Francis, Roland C E
description Oxidative stress caused by mechanical ventilation contributes to the pathophysiology of ventilator-induced lung injury (VILI). A key mechanism maintaining redox balance is the upregulation of nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant gene expression. We tested whether pretreatment with an Nrf2-antioxidant response element (ARE) pathway activator -butylhydroquinone (tBHQ) protects against VILI. Male C57BL/6J mice were pretreated with an intraperitoneal injection of tBHQ ( = 10), an equivalent volume of 3% ethanol (EtOH3%, vehicle, = 13), or phosphate-buffered saline (controls, = 10) and were then subjected to high tidal volume (HV ) ventilation for a maximum of 4 h. HV ventilation severely impaired arterial oxygenation (  = 49 ± 7 mmHg, means ± SD) and respiratory system compliance, resulting in a 100% mortality among controls. Compared with controls, tBHQ improved arterial oxygenation (  = 90 ± 41 mmHg) and respiratory system compliance after HV ventilation. In addition, tBHQ attenuated the HV ventilation-induced development of lung edema and proinflammatory response, evidenced by lower concentrations of protein and proinflammatory cytokines (IL-1β and TNF-α) in the bronchoalveolar lavage fluid, respectively. Moreover, tBHQ enhanced the pulmonary redox capacity, indicated by enhanced Nrf2-depentent gene expression at baseline and by the highest total glutathione concentration after HV ventilation among all groups. Overall, tBHQ pretreatment resulted in 60% survival ( < 0.001 vs. controls). Interestingly, compared with controls, EtOH3% reduced the proinflammatory response to HV ventilation in the lung, resulting in 38.5% survival ( = 0.0054 vs. controls). In this murine model of VILI, tBHQ increases the pulmonary redox capacity by activating the Nrf2-ARE pathway and protects against VILI. These findings support the efficacy of pharmacological Nrf2-ARE pathway activation to increase resilience against oxidative stress during injurious mechanical ventilation.
doi_str_mv 10.1152/ajplung.00131.2020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2449180799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488069802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-cbc22d71e4640f9b847e634813eb1438902648227a5bad89d60e2f98964141ca3</originalsourceid><addsrcrecordid>eNpdkctu1TAQhi1ERUvhBVggS2zY5HR8SeIsUcVNquimXUeOPTn4KHGCLxHnOXhhfOiBBauZ0Xzza379hLxhsGOs5jf6sE7Z73cATLAdBw7PyFVZ8IrVIJ-XHiRU0EB9SV7GeACAGqB5QS6FAN5w0V6RXw8YEq2GnI7T96MNy4_s_OKR6ryf0adIv4WRVxZX9LbMNGB0k0NvCrLXzsdEl5_O6uQ2pDGVdaTaW-rmNSwbRhpz2NymJ7qMdCsKbtJpCZXzNhu09OSAOn_I4VgKnZ3BV-Ri1FPE1-d6TR4_fXy4_VLd3X_-evvhrjJCsFSZwXBuW4aykTB2g5ItNkIqJnBgUqiueJSK81bXg7aqsw0gHzvVNZJJZrS4Ju-fdNeTbYypn100OE3a45Jjz6XsmIK26wr67j_0sOTgy3eFUgqaTgEvFH-iTFhiDDj2a3CzDseeQX-KrD9H1v-JrD9FVo7enqXzMKP9d_I3I_EblO2WIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488069802</pqid></control><display><type>article</type><title>Tert -butylhydroquinone augments Nrf2-dependent resilience against oxidative stress and improves survival of ventilator-induced lung injury in mice</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Veskemaa, Lilly ; Graw, Jan A ; Pickerodt, Philipp A ; Taher, Mahdi ; Boemke, Willehad ; González-López, Adrián ; Francis, Roland C E</creator><creatorcontrib>Veskemaa, Lilly ; Graw, Jan A ; Pickerodt, Philipp A ; Taher, Mahdi ; Boemke, Willehad ; González-López, Adrián ; Francis, Roland C E</creatorcontrib><description>Oxidative stress caused by mechanical ventilation contributes to the pathophysiology of ventilator-induced lung injury (VILI). A key mechanism maintaining redox balance is the upregulation of nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant gene expression. We tested whether pretreatment with an Nrf2-antioxidant response element (ARE) pathway activator -butylhydroquinone (tBHQ) protects against VILI. Male C57BL/6J mice were pretreated with an intraperitoneal injection of tBHQ ( = 10), an equivalent volume of 3% ethanol (EtOH3%, vehicle, = 13), or phosphate-buffered saline (controls, = 10) and were then subjected to high tidal volume (HV ) ventilation for a maximum of 4 h. HV ventilation severely impaired arterial oxygenation (  = 49 ± 7 mmHg, means ± SD) and respiratory system compliance, resulting in a 100% mortality among controls. Compared with controls, tBHQ improved arterial oxygenation (  = 90 ± 41 mmHg) and respiratory system compliance after HV ventilation. In addition, tBHQ attenuated the HV ventilation-induced development of lung edema and proinflammatory response, evidenced by lower concentrations of protein and proinflammatory cytokines (IL-1β and TNF-α) in the bronchoalveolar lavage fluid, respectively. Moreover, tBHQ enhanced the pulmonary redox capacity, indicated by enhanced Nrf2-depentent gene expression at baseline and by the highest total glutathione concentration after HV ventilation among all groups. Overall, tBHQ pretreatment resulted in 60% survival ( &lt; 0.001 vs. controls). Interestingly, compared with controls, EtOH3% reduced the proinflammatory response to HV ventilation in the lung, resulting in 38.5% survival ( = 0.0054 vs. controls). In this murine model of VILI, tBHQ increases the pulmonary redox capacity by activating the Nrf2-ARE pathway and protects against VILI. These findings support the efficacy of pharmacological Nrf2-ARE pathway activation to increase resilience against oxidative stress during injurious mechanical ventilation.</description><identifier>ISSN: 1040-0605</identifier><identifier>EISSN: 1522-1504</identifier><identifier>DOI: 10.1152/ajplung.00131.2020</identifier><identifier>PMID: 33026237</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Alveoli ; Animal models ; Animals ; Antioxidant Response Elements ; Antioxidants ; Antioxidants - pharmacology ; Bronchoalveolar Lavage Fluid ; Bronchus ; Cytokines ; Cytokines - metabolism ; Edema ; Ethanol ; Gene expression ; Gene Expression Regulation ; Glutathione ; Hydroquinones - pharmacology ; IL-1β ; Inflammation ; Injuries ; Lungs ; Male ; Mechanical ventilation ; Mice ; Mice, Inbred C57BL ; NF-E2-Related Factor 2 - genetics ; NF-E2-Related Factor 2 - metabolism ; NRF2 protein ; Oxidative Stress ; Oxygenation ; Pretreatment ; Protective Agents - pharmacology ; Pulmonary Edema - etiology ; Pulmonary Edema - prevention &amp; control ; Resilience ; Respiration, Artificial - adverse effects ; Respiratory system ; Survival ; Survival Rate ; t-Butylhydroquinone ; Tumor necrosis factor-α ; Ventilation ; Ventilator-Induced Lung Injury - drug therapy ; Ventilator-Induced Lung Injury - etiology ; Ventilator-Induced Lung Injury - mortality ; Ventilator-Induced Lung Injury - pathology ; Ventilators</subject><ispartof>American journal of physiology. Lung cellular and molecular physiology, 2021-01, Vol.320 (1), p.L17-L28</ispartof><rights>Copyright American Physiological Society Jan 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-cbc22d71e4640f9b847e634813eb1438902648227a5bad89d60e2f98964141ca3</citedby><cites>FETCH-LOGICAL-c331t-cbc22d71e4640f9b847e634813eb1438902648227a5bad89d60e2f98964141ca3</cites><orcidid>0000-0001-5875-8250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3026,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33026237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Veskemaa, Lilly</creatorcontrib><creatorcontrib>Graw, Jan A</creatorcontrib><creatorcontrib>Pickerodt, Philipp A</creatorcontrib><creatorcontrib>Taher, Mahdi</creatorcontrib><creatorcontrib>Boemke, Willehad</creatorcontrib><creatorcontrib>González-López, Adrián</creatorcontrib><creatorcontrib>Francis, Roland C E</creatorcontrib><title>Tert -butylhydroquinone augments Nrf2-dependent resilience against oxidative stress and improves survival of ventilator-induced lung injury in mice</title><title>American journal of physiology. Lung cellular and molecular physiology</title><addtitle>Am J Physiol Lung Cell Mol Physiol</addtitle><description>Oxidative stress caused by mechanical ventilation contributes to the pathophysiology of ventilator-induced lung injury (VILI). A key mechanism maintaining redox balance is the upregulation of nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant gene expression. We tested whether pretreatment with an Nrf2-antioxidant response element (ARE) pathway activator -butylhydroquinone (tBHQ) protects against VILI. Male C57BL/6J mice were pretreated with an intraperitoneal injection of tBHQ ( = 10), an equivalent volume of 3% ethanol (EtOH3%, vehicle, = 13), or phosphate-buffered saline (controls, = 10) and were then subjected to high tidal volume (HV ) ventilation for a maximum of 4 h. HV ventilation severely impaired arterial oxygenation (  = 49 ± 7 mmHg, means ± SD) and respiratory system compliance, resulting in a 100% mortality among controls. Compared with controls, tBHQ improved arterial oxygenation (  = 90 ± 41 mmHg) and respiratory system compliance after HV ventilation. In addition, tBHQ attenuated the HV ventilation-induced development of lung edema and proinflammatory response, evidenced by lower concentrations of protein and proinflammatory cytokines (IL-1β and TNF-α) in the bronchoalveolar lavage fluid, respectively. Moreover, tBHQ enhanced the pulmonary redox capacity, indicated by enhanced Nrf2-depentent gene expression at baseline and by the highest total glutathione concentration after HV ventilation among all groups. Overall, tBHQ pretreatment resulted in 60% survival ( &lt; 0.001 vs. controls). Interestingly, compared with controls, EtOH3% reduced the proinflammatory response to HV ventilation in the lung, resulting in 38.5% survival ( = 0.0054 vs. controls). In this murine model of VILI, tBHQ increases the pulmonary redox capacity by activating the Nrf2-ARE pathway and protects against VILI. These findings support the efficacy of pharmacological Nrf2-ARE pathway activation to increase resilience against oxidative stress during injurious mechanical ventilation.</description><subject>Alveoli</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antioxidant Response Elements</subject><subject>Antioxidants</subject><subject>Antioxidants - pharmacology</subject><subject>Bronchoalveolar Lavage Fluid</subject><subject>Bronchus</subject><subject>Cytokines</subject><subject>Cytokines - metabolism</subject><subject>Edema</subject><subject>Ethanol</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Glutathione</subject><subject>Hydroquinones - pharmacology</subject><subject>IL-1β</subject><subject>Inflammation</subject><subject>Injuries</subject><subject>Lungs</subject><subject>Male</subject><subject>Mechanical ventilation</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>NF-E2-Related Factor 2 - genetics</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>NRF2 protein</subject><subject>Oxidative Stress</subject><subject>Oxygenation</subject><subject>Pretreatment</subject><subject>Protective Agents - pharmacology</subject><subject>Pulmonary Edema - etiology</subject><subject>Pulmonary Edema - prevention &amp; control</subject><subject>Resilience</subject><subject>Respiration, Artificial - adverse effects</subject><subject>Respiratory system</subject><subject>Survival</subject><subject>Survival Rate</subject><subject>t-Butylhydroquinone</subject><subject>Tumor necrosis factor-α</subject><subject>Ventilation</subject><subject>Ventilator-Induced Lung Injury - drug therapy</subject><subject>Ventilator-Induced Lung Injury - etiology</subject><subject>Ventilator-Induced Lung Injury - mortality</subject><subject>Ventilator-Induced Lung Injury - pathology</subject><subject>Ventilators</subject><issn>1040-0605</issn><issn>1522-1504</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctu1TAQhi1ERUvhBVggS2zY5HR8SeIsUcVNquimXUeOPTn4KHGCLxHnOXhhfOiBBauZ0Xzza379hLxhsGOs5jf6sE7Z73cATLAdBw7PyFVZ8IrVIJ-XHiRU0EB9SV7GeACAGqB5QS6FAN5w0V6RXw8YEq2GnI7T96MNy4_s_OKR6ryf0adIv4WRVxZX9LbMNGB0k0NvCrLXzsdEl5_O6uQ2pDGVdaTaW-rmNSwbRhpz2NymJ7qMdCsKbtJpCZXzNhu09OSAOn_I4VgKnZ3BV-Ri1FPE1-d6TR4_fXy4_VLd3X_-evvhrjJCsFSZwXBuW4aykTB2g5ItNkIqJnBgUqiueJSK81bXg7aqsw0gHzvVNZJJZrS4Ju-fdNeTbYypn100OE3a45Jjz6XsmIK26wr67j_0sOTgy3eFUgqaTgEvFH-iTFhiDDj2a3CzDseeQX-KrD9H1v-JrD9FVo7enqXzMKP9d_I3I_EblO2WIA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Veskemaa, Lilly</creator><creator>Graw, Jan A</creator><creator>Pickerodt, Philipp A</creator><creator>Taher, Mahdi</creator><creator>Boemke, Willehad</creator><creator>González-López, Adrián</creator><creator>Francis, Roland C E</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5875-8250</orcidid></search><sort><creationdate>20210101</creationdate><title>Tert -butylhydroquinone augments Nrf2-dependent resilience against oxidative stress and improves survival of ventilator-induced lung injury in mice</title><author>Veskemaa, Lilly ; Graw, Jan A ; Pickerodt, Philipp A ; Taher, Mahdi ; Boemke, Willehad ; González-López, Adrián ; Francis, Roland C E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-cbc22d71e4640f9b847e634813eb1438902648227a5bad89d60e2f98964141ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alveoli</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antioxidant Response Elements</topic><topic>Antioxidants</topic><topic>Antioxidants - pharmacology</topic><topic>Bronchoalveolar Lavage Fluid</topic><topic>Bronchus</topic><topic>Cytokines</topic><topic>Cytokines - metabolism</topic><topic>Edema</topic><topic>Ethanol</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Glutathione</topic><topic>Hydroquinones - pharmacology</topic><topic>IL-1β</topic><topic>Inflammation</topic><topic>Injuries</topic><topic>Lungs</topic><topic>Male</topic><topic>Mechanical ventilation</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>NF-E2-Related Factor 2 - genetics</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>NRF2 protein</topic><topic>Oxidative Stress</topic><topic>Oxygenation</topic><topic>Pretreatment</topic><topic>Protective Agents - pharmacology</topic><topic>Pulmonary Edema - etiology</topic><topic>Pulmonary Edema - prevention &amp; control</topic><topic>Resilience</topic><topic>Respiration, Artificial - adverse effects</topic><topic>Respiratory system</topic><topic>Survival</topic><topic>Survival Rate</topic><topic>t-Butylhydroquinone</topic><topic>Tumor necrosis factor-α</topic><topic>Ventilation</topic><topic>Ventilator-Induced Lung Injury - drug therapy</topic><topic>Ventilator-Induced Lung Injury - etiology</topic><topic>Ventilator-Induced Lung Injury - mortality</topic><topic>Ventilator-Induced Lung Injury - pathology</topic><topic>Ventilators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veskemaa, Lilly</creatorcontrib><creatorcontrib>Graw, Jan A</creatorcontrib><creatorcontrib>Pickerodt, Philipp A</creatorcontrib><creatorcontrib>Taher, Mahdi</creatorcontrib><creatorcontrib>Boemke, Willehad</creatorcontrib><creatorcontrib>González-López, Adrián</creatorcontrib><creatorcontrib>Francis, Roland C E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of physiology. Lung cellular and molecular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veskemaa, Lilly</au><au>Graw, Jan A</au><au>Pickerodt, Philipp A</au><au>Taher, Mahdi</au><au>Boemke, Willehad</au><au>González-López, Adrián</au><au>Francis, Roland C E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tert -butylhydroquinone augments Nrf2-dependent resilience against oxidative stress and improves survival of ventilator-induced lung injury in mice</atitle><jtitle>American journal of physiology. Lung cellular and molecular physiology</jtitle><addtitle>Am J Physiol Lung Cell Mol Physiol</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>320</volume><issue>1</issue><spage>L17</spage><epage>L28</epage><pages>L17-L28</pages><issn>1040-0605</issn><eissn>1522-1504</eissn><abstract>Oxidative stress caused by mechanical ventilation contributes to the pathophysiology of ventilator-induced lung injury (VILI). A key mechanism maintaining redox balance is the upregulation of nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant gene expression. We tested whether pretreatment with an Nrf2-antioxidant response element (ARE) pathway activator -butylhydroquinone (tBHQ) protects against VILI. Male C57BL/6J mice were pretreated with an intraperitoneal injection of tBHQ ( = 10), an equivalent volume of 3% ethanol (EtOH3%, vehicle, = 13), or phosphate-buffered saline (controls, = 10) and were then subjected to high tidal volume (HV ) ventilation for a maximum of 4 h. HV ventilation severely impaired arterial oxygenation (  = 49 ± 7 mmHg, means ± SD) and respiratory system compliance, resulting in a 100% mortality among controls. Compared with controls, tBHQ improved arterial oxygenation (  = 90 ± 41 mmHg) and respiratory system compliance after HV ventilation. In addition, tBHQ attenuated the HV ventilation-induced development of lung edema and proinflammatory response, evidenced by lower concentrations of protein and proinflammatory cytokines (IL-1β and TNF-α) in the bronchoalveolar lavage fluid, respectively. Moreover, tBHQ enhanced the pulmonary redox capacity, indicated by enhanced Nrf2-depentent gene expression at baseline and by the highest total glutathione concentration after HV ventilation among all groups. Overall, tBHQ pretreatment resulted in 60% survival ( &lt; 0.001 vs. controls). Interestingly, compared with controls, EtOH3% reduced the proinflammatory response to HV ventilation in the lung, resulting in 38.5% survival ( = 0.0054 vs. controls). In this murine model of VILI, tBHQ increases the pulmonary redox capacity by activating the Nrf2-ARE pathway and protects against VILI. These findings support the efficacy of pharmacological Nrf2-ARE pathway activation to increase resilience against oxidative stress during injurious mechanical ventilation.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>33026237</pmid><doi>10.1152/ajplung.00131.2020</doi><orcidid>https://orcid.org/0000-0001-5875-8250</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1040-0605
ispartof American journal of physiology. Lung cellular and molecular physiology, 2021-01, Vol.320 (1), p.L17-L28
issn 1040-0605
1522-1504
language eng
recordid cdi_proquest_miscellaneous_2449180799
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Alveoli
Animal models
Animals
Antioxidant Response Elements
Antioxidants
Antioxidants - pharmacology
Bronchoalveolar Lavage Fluid
Bronchus
Cytokines
Cytokines - metabolism
Edema
Ethanol
Gene expression
Gene Expression Regulation
Glutathione
Hydroquinones - pharmacology
IL-1β
Inflammation
Injuries
Lungs
Male
Mechanical ventilation
Mice
Mice, Inbred C57BL
NF-E2-Related Factor 2 - genetics
NF-E2-Related Factor 2 - metabolism
NRF2 protein
Oxidative Stress
Oxygenation
Pretreatment
Protective Agents - pharmacology
Pulmonary Edema - etiology
Pulmonary Edema - prevention & control
Resilience
Respiration, Artificial - adverse effects
Respiratory system
Survival
Survival Rate
t-Butylhydroquinone
Tumor necrosis factor-α
Ventilation
Ventilator-Induced Lung Injury - drug therapy
Ventilator-Induced Lung Injury - etiology
Ventilator-Induced Lung Injury - mortality
Ventilator-Induced Lung Injury - pathology
Ventilators
title Tert -butylhydroquinone augments Nrf2-dependent resilience against oxidative stress and improves survival of ventilator-induced lung injury in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tert%20-butylhydroquinone%20augments%20Nrf2-dependent%20resilience%20against%20oxidative%20stress%20and%20improves%20survival%20of%20ventilator-induced%20lung%20injury%20in%20mice&rft.jtitle=American%20journal%20of%20physiology.%20Lung%20cellular%20and%20molecular%20physiology&rft.au=Veskemaa,%20Lilly&rft.date=2021-01-01&rft.volume=320&rft.issue=1&rft.spage=L17&rft.epage=L28&rft.pages=L17-L28&rft.issn=1040-0605&rft.eissn=1522-1504&rft_id=info:doi/10.1152/ajplung.00131.2020&rft_dat=%3Cproquest_cross%3E2488069802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488069802&rft_id=info:pmid/33026237&rfr_iscdi=true