Thermal conductivity of free-standing silicon nanowire using Raman spectroscopy

Low dimensional systems, nanowires (NWs), in particular, have exhibited excellent optical and electronic properties. Understanding the thermal properties in semiconductor NWs is very important for their applications in electronic devices. In the present study, the thermal conductivity of a freestand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2020-12, Vol.31 (50), p.505701-505701
Hauptverfasser: Sahoo, Sandhyarani, Mallik, Sameer Kumar, Sahu, Mousam Charan, Joseph, Anjana, Singh, Satyabrata, Gupta, Sanjeev K, Rout, Bibhudutta, Pradhan, Gopal K, Sahoo, Satyaprakash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 505701
container_issue 50
container_start_page 505701
container_title Nanotechnology
container_volume 31
creator Sahoo, Sandhyarani
Mallik, Sameer Kumar
Sahu, Mousam Charan
Joseph, Anjana
Singh, Satyabrata
Gupta, Sanjeev K
Rout, Bibhudutta
Pradhan, Gopal K
Sahoo, Satyaprakash
description Low dimensional systems, nanowires (NWs), in particular, have exhibited excellent optical and electronic properties. Understanding the thermal properties in semiconductor NWs is very important for their applications in electronic devices. In the present study, the thermal conductivity of a freestanding silicon NW is estimated by employing Raman spectroscopy. The advantage of this technique is that the excitation source (laser) acts as both the heater and probe. The variations of the first-order Raman peak position of the freestanding silicon NW with respect to temperature and laser power are recorded. From the analysis of effective laser power absorbed by exposed silicon NW and a detailed Raman study along with the concept of longitudinal heat distribution in silicon NW, the thermal conductivity of the freestanding silicon NW of ∼112 nm diameter is estimated to be ∼53 W m−1 K− 1.
doi_str_mv 10.1088/1361-6528/abb42c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2448852029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448852029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-8c58478c41ef44488ac22821a5baac9f8dbd2f05988bd407d0f062a707986b0b3</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMobk7vnqRHD9YladqmRxn-gsFA5jkkaaIZbVKTVtl_b0rnbp4--Hi-l_d7ALhG8B5BSpcoK1Ba5JguuRAEyxMwP65OwRxWeZkSQskMXISwgxAhitE5mGUZxAhn-Rxstp_Kt7xJpLP1IHvzbfp94nSivVJp6Lmtjf1IgmlMJBLLrfsxXiVDGNdvvOU2CZ2SvXdBum5_Cc40b4K6OswFeH963K5e0vXm-XX1sE5llhV9SmVOSUklQUqT2JByiXHsxnPBuaw0rUWNNcwrSkVNYFlDDQvMS1hWtBBQZAtwO-V23n0NKvSsNUGqpuFWuSEwPIbmGOIqonBCZewYvNKs86blfs8QZKNGNjpjozM2aYwnN4f0QbSqPh78eYvA3QQY17GdG7yNz_6f9wtFXnyy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448852029</pqid></control><display><type>article</type><title>Thermal conductivity of free-standing silicon nanowire using Raman spectroscopy</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Sahoo, Sandhyarani ; Mallik, Sameer Kumar ; Sahu, Mousam Charan ; Joseph, Anjana ; Singh, Satyabrata ; Gupta, Sanjeev K ; Rout, Bibhudutta ; Pradhan, Gopal K ; Sahoo, Satyaprakash</creator><creatorcontrib>Sahoo, Sandhyarani ; Mallik, Sameer Kumar ; Sahu, Mousam Charan ; Joseph, Anjana ; Singh, Satyabrata ; Gupta, Sanjeev K ; Rout, Bibhudutta ; Pradhan, Gopal K ; Sahoo, Satyaprakash</creatorcontrib><description>Low dimensional systems, nanowires (NWs), in particular, have exhibited excellent optical and electronic properties. Understanding the thermal properties in semiconductor NWs is very important for their applications in electronic devices. In the present study, the thermal conductivity of a freestanding silicon NW is estimated by employing Raman spectroscopy. The advantage of this technique is that the excitation source (laser) acts as both the heater and probe. The variations of the first-order Raman peak position of the freestanding silicon NW with respect to temperature and laser power are recorded. From the analysis of effective laser power absorbed by exposed silicon NW and a detailed Raman study along with the concept of longitudinal heat distribution in silicon NW, the thermal conductivity of the freestanding silicon NW of ∼112 nm diameter is estimated to be ∼53 W m−1 K− 1.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/abb42c</identifier><identifier>PMID: 33021235</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>nanowire ; phonon ; Raman spectroscopy ; silicon ; thermal conductivity ; thermoelectric</subject><ispartof>Nanotechnology, 2020-12, Vol.31 (50), p.505701-505701</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-8c58478c41ef44488ac22821a5baac9f8dbd2f05988bd407d0f062a707986b0b3</citedby><cites>FETCH-LOGICAL-c336t-8c58478c41ef44488ac22821a5baac9f8dbd2f05988bd407d0f062a707986b0b3</cites><orcidid>0000-0002-3060-2104 ; 0000-0002-9842-2281 ; 0000-0002-1080-4091 ; 0000-0001-5578-8956 ; 0000-0002-6627-3410 ; 0000-0001-9766-3713 ; 0000-0002-7748-1469 ; 0000-0001-5819-730X ; 0000-0002-1956-7248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/abb42c/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33021235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sahoo, Sandhyarani</creatorcontrib><creatorcontrib>Mallik, Sameer Kumar</creatorcontrib><creatorcontrib>Sahu, Mousam Charan</creatorcontrib><creatorcontrib>Joseph, Anjana</creatorcontrib><creatorcontrib>Singh, Satyabrata</creatorcontrib><creatorcontrib>Gupta, Sanjeev K</creatorcontrib><creatorcontrib>Rout, Bibhudutta</creatorcontrib><creatorcontrib>Pradhan, Gopal K</creatorcontrib><creatorcontrib>Sahoo, Satyaprakash</creatorcontrib><title>Thermal conductivity of free-standing silicon nanowire using Raman spectroscopy</title><title>Nanotechnology</title><addtitle>Nano</addtitle><addtitle>Nanotechnology</addtitle><description>Low dimensional systems, nanowires (NWs), in particular, have exhibited excellent optical and electronic properties. Understanding the thermal properties in semiconductor NWs is very important for their applications in electronic devices. In the present study, the thermal conductivity of a freestanding silicon NW is estimated by employing Raman spectroscopy. The advantage of this technique is that the excitation source (laser) acts as both the heater and probe. The variations of the first-order Raman peak position of the freestanding silicon NW with respect to temperature and laser power are recorded. From the analysis of effective laser power absorbed by exposed silicon NW and a detailed Raman study along with the concept of longitudinal heat distribution in silicon NW, the thermal conductivity of the freestanding silicon NW of ∼112 nm diameter is estimated to be ∼53 W m−1 K− 1.</description><subject>nanowire</subject><subject>phonon</subject><subject>Raman spectroscopy</subject><subject>silicon</subject><subject>thermal conductivity</subject><subject>thermoelectric</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMobk7vnqRHD9YladqmRxn-gsFA5jkkaaIZbVKTVtl_b0rnbp4--Hi-l_d7ALhG8B5BSpcoK1Ba5JguuRAEyxMwP65OwRxWeZkSQskMXISwgxAhitE5mGUZxAhn-Rxstp_Kt7xJpLP1IHvzbfp94nSivVJp6Lmtjf1IgmlMJBLLrfsxXiVDGNdvvOU2CZ2SvXdBum5_Cc40b4K6OswFeH963K5e0vXm-XX1sE5llhV9SmVOSUklQUqT2JByiXHsxnPBuaw0rUWNNcwrSkVNYFlDDQvMS1hWtBBQZAtwO-V23n0NKvSsNUGqpuFWuSEwPIbmGOIqonBCZewYvNKs86blfs8QZKNGNjpjozM2aYwnN4f0QbSqPh78eYvA3QQY17GdG7yNz_6f9wtFXnyy</recordid><startdate>20201211</startdate><enddate>20201211</enddate><creator>Sahoo, Sandhyarani</creator><creator>Mallik, Sameer Kumar</creator><creator>Sahu, Mousam Charan</creator><creator>Joseph, Anjana</creator><creator>Singh, Satyabrata</creator><creator>Gupta, Sanjeev K</creator><creator>Rout, Bibhudutta</creator><creator>Pradhan, Gopal K</creator><creator>Sahoo, Satyaprakash</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3060-2104</orcidid><orcidid>https://orcid.org/0000-0002-9842-2281</orcidid><orcidid>https://orcid.org/0000-0002-1080-4091</orcidid><orcidid>https://orcid.org/0000-0001-5578-8956</orcidid><orcidid>https://orcid.org/0000-0002-6627-3410</orcidid><orcidid>https://orcid.org/0000-0001-9766-3713</orcidid><orcidid>https://orcid.org/0000-0002-7748-1469</orcidid><orcidid>https://orcid.org/0000-0001-5819-730X</orcidid><orcidid>https://orcid.org/0000-0002-1956-7248</orcidid></search><sort><creationdate>20201211</creationdate><title>Thermal conductivity of free-standing silicon nanowire using Raman spectroscopy</title><author>Sahoo, Sandhyarani ; Mallik, Sameer Kumar ; Sahu, Mousam Charan ; Joseph, Anjana ; Singh, Satyabrata ; Gupta, Sanjeev K ; Rout, Bibhudutta ; Pradhan, Gopal K ; Sahoo, Satyaprakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-8c58478c41ef44488ac22821a5baac9f8dbd2f05988bd407d0f062a707986b0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>nanowire</topic><topic>phonon</topic><topic>Raman spectroscopy</topic><topic>silicon</topic><topic>thermal conductivity</topic><topic>thermoelectric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahoo, Sandhyarani</creatorcontrib><creatorcontrib>Mallik, Sameer Kumar</creatorcontrib><creatorcontrib>Sahu, Mousam Charan</creatorcontrib><creatorcontrib>Joseph, Anjana</creatorcontrib><creatorcontrib>Singh, Satyabrata</creatorcontrib><creatorcontrib>Gupta, Sanjeev K</creatorcontrib><creatorcontrib>Rout, Bibhudutta</creatorcontrib><creatorcontrib>Pradhan, Gopal K</creatorcontrib><creatorcontrib>Sahoo, Satyaprakash</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahoo, Sandhyarani</au><au>Mallik, Sameer Kumar</au><au>Sahu, Mousam Charan</au><au>Joseph, Anjana</au><au>Singh, Satyabrata</au><au>Gupta, Sanjeev K</au><au>Rout, Bibhudutta</au><au>Pradhan, Gopal K</au><au>Sahoo, Satyaprakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity of free-standing silicon nanowire using Raman spectroscopy</atitle><jtitle>Nanotechnology</jtitle><stitle>Nano</stitle><addtitle>Nanotechnology</addtitle><date>2020-12-11</date><risdate>2020</risdate><volume>31</volume><issue>50</issue><spage>505701</spage><epage>505701</epage><pages>505701-505701</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Low dimensional systems, nanowires (NWs), in particular, have exhibited excellent optical and electronic properties. Understanding the thermal properties in semiconductor NWs is very important for their applications in electronic devices. In the present study, the thermal conductivity of a freestanding silicon NW is estimated by employing Raman spectroscopy. The advantage of this technique is that the excitation source (laser) acts as both the heater and probe. The variations of the first-order Raman peak position of the freestanding silicon NW with respect to temperature and laser power are recorded. From the analysis of effective laser power absorbed by exposed silicon NW and a detailed Raman study along with the concept of longitudinal heat distribution in silicon NW, the thermal conductivity of the freestanding silicon NW of ∼112 nm diameter is estimated to be ∼53 W m−1 K− 1.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>33021235</pmid><doi>10.1088/1361-6528/abb42c</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3060-2104</orcidid><orcidid>https://orcid.org/0000-0002-9842-2281</orcidid><orcidid>https://orcid.org/0000-0002-1080-4091</orcidid><orcidid>https://orcid.org/0000-0001-5578-8956</orcidid><orcidid>https://orcid.org/0000-0002-6627-3410</orcidid><orcidid>https://orcid.org/0000-0001-9766-3713</orcidid><orcidid>https://orcid.org/0000-0002-7748-1469</orcidid><orcidid>https://orcid.org/0000-0001-5819-730X</orcidid><orcidid>https://orcid.org/0000-0002-1956-7248</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2020-12, Vol.31 (50), p.505701-505701
issn 0957-4484
1361-6528
language eng
recordid cdi_proquest_miscellaneous_2448852029
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects nanowire
phonon
Raman spectroscopy
silicon
thermal conductivity
thermoelectric
title Thermal conductivity of free-standing silicon nanowire using Raman spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20of%20free-standing%20silicon%20nanowire%20using%20Raman%20spectroscopy&rft.jtitle=Nanotechnology&rft.au=Sahoo,%20Sandhyarani&rft.date=2020-12-11&rft.volume=31&rft.issue=50&rft.spage=505701&rft.epage=505701&rft.pages=505701-505701&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/abb42c&rft_dat=%3Cproquest_cross%3E2448852029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448852029&rft_id=info:pmid/33021235&rfr_iscdi=true