Thermal conductivity of free-standing silicon nanowire using Raman spectroscopy
Low dimensional systems, nanowires (NWs), in particular, have exhibited excellent optical and electronic properties. Understanding the thermal properties in semiconductor NWs is very important for their applications in electronic devices. In the present study, the thermal conductivity of a freestand...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2020-12, Vol.31 (50), p.505701-505701 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 505701 |
---|---|
container_issue | 50 |
container_start_page | 505701 |
container_title | Nanotechnology |
container_volume | 31 |
creator | Sahoo, Sandhyarani Mallik, Sameer Kumar Sahu, Mousam Charan Joseph, Anjana Singh, Satyabrata Gupta, Sanjeev K Rout, Bibhudutta Pradhan, Gopal K Sahoo, Satyaprakash |
description | Low dimensional systems, nanowires (NWs), in particular, have exhibited excellent optical and electronic properties. Understanding the thermal properties in semiconductor NWs is very important for their applications in electronic devices. In the present study, the thermal conductivity of a freestanding silicon NW is estimated by employing Raman spectroscopy. The advantage of this technique is that the excitation source (laser) acts as both the heater and probe. The variations of the first-order Raman peak position of the freestanding silicon NW with respect to temperature and laser power are recorded. From the analysis of effective laser power absorbed by exposed silicon NW and a detailed Raman study along with the concept of longitudinal heat distribution in silicon NW, the thermal conductivity of the freestanding silicon NW of ∼112 nm diameter is estimated to be ∼53 W m−1 K− 1. |
doi_str_mv | 10.1088/1361-6528/abb42c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2448852029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448852029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-8c58478c41ef44488ac22821a5baac9f8dbd2f05988bd407d0f062a707986b0b3</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMobk7vnqRHD9YladqmRxn-gsFA5jkkaaIZbVKTVtl_b0rnbp4--Hi-l_d7ALhG8B5BSpcoK1Ba5JguuRAEyxMwP65OwRxWeZkSQskMXISwgxAhitE5mGUZxAhn-Rxstp_Kt7xJpLP1IHvzbfp94nSivVJp6Lmtjf1IgmlMJBLLrfsxXiVDGNdvvOU2CZ2SvXdBum5_Cc40b4K6OswFeH963K5e0vXm-XX1sE5llhV9SmVOSUklQUqT2JByiXHsxnPBuaw0rUWNNcwrSkVNYFlDDQvMS1hWtBBQZAtwO-V23n0NKvSsNUGqpuFWuSEwPIbmGOIqonBCZewYvNKs86blfs8QZKNGNjpjozM2aYwnN4f0QbSqPh78eYvA3QQY17GdG7yNz_6f9wtFXnyy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448852029</pqid></control><display><type>article</type><title>Thermal conductivity of free-standing silicon nanowire using Raman spectroscopy</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Sahoo, Sandhyarani ; Mallik, Sameer Kumar ; Sahu, Mousam Charan ; Joseph, Anjana ; Singh, Satyabrata ; Gupta, Sanjeev K ; Rout, Bibhudutta ; Pradhan, Gopal K ; Sahoo, Satyaprakash</creator><creatorcontrib>Sahoo, Sandhyarani ; Mallik, Sameer Kumar ; Sahu, Mousam Charan ; Joseph, Anjana ; Singh, Satyabrata ; Gupta, Sanjeev K ; Rout, Bibhudutta ; Pradhan, Gopal K ; Sahoo, Satyaprakash</creatorcontrib><description>Low dimensional systems, nanowires (NWs), in particular, have exhibited excellent optical and electronic properties. Understanding the thermal properties in semiconductor NWs is very important for their applications in electronic devices. In the present study, the thermal conductivity of a freestanding silicon NW is estimated by employing Raman spectroscopy. The advantage of this technique is that the excitation source (laser) acts as both the heater and probe. The variations of the first-order Raman peak position of the freestanding silicon NW with respect to temperature and laser power are recorded. From the analysis of effective laser power absorbed by exposed silicon NW and a detailed Raman study along with the concept of longitudinal heat distribution in silicon NW, the thermal conductivity of the freestanding silicon NW of ∼112 nm diameter is estimated to be ∼53 W m−1 K− 1.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/abb42c</identifier><identifier>PMID: 33021235</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>nanowire ; phonon ; Raman spectroscopy ; silicon ; thermal conductivity ; thermoelectric</subject><ispartof>Nanotechnology, 2020-12, Vol.31 (50), p.505701-505701</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-8c58478c41ef44488ac22821a5baac9f8dbd2f05988bd407d0f062a707986b0b3</citedby><cites>FETCH-LOGICAL-c336t-8c58478c41ef44488ac22821a5baac9f8dbd2f05988bd407d0f062a707986b0b3</cites><orcidid>0000-0002-3060-2104 ; 0000-0002-9842-2281 ; 0000-0002-1080-4091 ; 0000-0001-5578-8956 ; 0000-0002-6627-3410 ; 0000-0001-9766-3713 ; 0000-0002-7748-1469 ; 0000-0001-5819-730X ; 0000-0002-1956-7248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/abb42c/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33021235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sahoo, Sandhyarani</creatorcontrib><creatorcontrib>Mallik, Sameer Kumar</creatorcontrib><creatorcontrib>Sahu, Mousam Charan</creatorcontrib><creatorcontrib>Joseph, Anjana</creatorcontrib><creatorcontrib>Singh, Satyabrata</creatorcontrib><creatorcontrib>Gupta, Sanjeev K</creatorcontrib><creatorcontrib>Rout, Bibhudutta</creatorcontrib><creatorcontrib>Pradhan, Gopal K</creatorcontrib><creatorcontrib>Sahoo, Satyaprakash</creatorcontrib><title>Thermal conductivity of free-standing silicon nanowire using Raman spectroscopy</title><title>Nanotechnology</title><addtitle>Nano</addtitle><addtitle>Nanotechnology</addtitle><description>Low dimensional systems, nanowires (NWs), in particular, have exhibited excellent optical and electronic properties. Understanding the thermal properties in semiconductor NWs is very important for their applications in electronic devices. In the present study, the thermal conductivity of a freestanding silicon NW is estimated by employing Raman spectroscopy. The advantage of this technique is that the excitation source (laser) acts as both the heater and probe. The variations of the first-order Raman peak position of the freestanding silicon NW with respect to temperature and laser power are recorded. From the analysis of effective laser power absorbed by exposed silicon NW and a detailed Raman study along with the concept of longitudinal heat distribution in silicon NW, the thermal conductivity of the freestanding silicon NW of ∼112 nm diameter is estimated to be ∼53 W m−1 K− 1.</description><subject>nanowire</subject><subject>phonon</subject><subject>Raman spectroscopy</subject><subject>silicon</subject><subject>thermal conductivity</subject><subject>thermoelectric</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMobk7vnqRHD9YladqmRxn-gsFA5jkkaaIZbVKTVtl_b0rnbp4--Hi-l_d7ALhG8B5BSpcoK1Ba5JguuRAEyxMwP65OwRxWeZkSQskMXISwgxAhitE5mGUZxAhn-Rxstp_Kt7xJpLP1IHvzbfp94nSivVJp6Lmtjf1IgmlMJBLLrfsxXiVDGNdvvOU2CZ2SvXdBum5_Cc40b4K6OswFeH963K5e0vXm-XX1sE5llhV9SmVOSUklQUqT2JByiXHsxnPBuaw0rUWNNcwrSkVNYFlDDQvMS1hWtBBQZAtwO-V23n0NKvSsNUGqpuFWuSEwPIbmGOIqonBCZewYvNKs86blfs8QZKNGNjpjozM2aYwnN4f0QbSqPh78eYvA3QQY17GdG7yNz_6f9wtFXnyy</recordid><startdate>20201211</startdate><enddate>20201211</enddate><creator>Sahoo, Sandhyarani</creator><creator>Mallik, Sameer Kumar</creator><creator>Sahu, Mousam Charan</creator><creator>Joseph, Anjana</creator><creator>Singh, Satyabrata</creator><creator>Gupta, Sanjeev K</creator><creator>Rout, Bibhudutta</creator><creator>Pradhan, Gopal K</creator><creator>Sahoo, Satyaprakash</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3060-2104</orcidid><orcidid>https://orcid.org/0000-0002-9842-2281</orcidid><orcidid>https://orcid.org/0000-0002-1080-4091</orcidid><orcidid>https://orcid.org/0000-0001-5578-8956</orcidid><orcidid>https://orcid.org/0000-0002-6627-3410</orcidid><orcidid>https://orcid.org/0000-0001-9766-3713</orcidid><orcidid>https://orcid.org/0000-0002-7748-1469</orcidid><orcidid>https://orcid.org/0000-0001-5819-730X</orcidid><orcidid>https://orcid.org/0000-0002-1956-7248</orcidid></search><sort><creationdate>20201211</creationdate><title>Thermal conductivity of free-standing silicon nanowire using Raman spectroscopy</title><author>Sahoo, Sandhyarani ; Mallik, Sameer Kumar ; Sahu, Mousam Charan ; Joseph, Anjana ; Singh, Satyabrata ; Gupta, Sanjeev K ; Rout, Bibhudutta ; Pradhan, Gopal K ; Sahoo, Satyaprakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-8c58478c41ef44488ac22821a5baac9f8dbd2f05988bd407d0f062a707986b0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>nanowire</topic><topic>phonon</topic><topic>Raman spectroscopy</topic><topic>silicon</topic><topic>thermal conductivity</topic><topic>thermoelectric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahoo, Sandhyarani</creatorcontrib><creatorcontrib>Mallik, Sameer Kumar</creatorcontrib><creatorcontrib>Sahu, Mousam Charan</creatorcontrib><creatorcontrib>Joseph, Anjana</creatorcontrib><creatorcontrib>Singh, Satyabrata</creatorcontrib><creatorcontrib>Gupta, Sanjeev K</creatorcontrib><creatorcontrib>Rout, Bibhudutta</creatorcontrib><creatorcontrib>Pradhan, Gopal K</creatorcontrib><creatorcontrib>Sahoo, Satyaprakash</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahoo, Sandhyarani</au><au>Mallik, Sameer Kumar</au><au>Sahu, Mousam Charan</au><au>Joseph, Anjana</au><au>Singh, Satyabrata</au><au>Gupta, Sanjeev K</au><au>Rout, Bibhudutta</au><au>Pradhan, Gopal K</au><au>Sahoo, Satyaprakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity of free-standing silicon nanowire using Raman spectroscopy</atitle><jtitle>Nanotechnology</jtitle><stitle>Nano</stitle><addtitle>Nanotechnology</addtitle><date>2020-12-11</date><risdate>2020</risdate><volume>31</volume><issue>50</issue><spage>505701</spage><epage>505701</epage><pages>505701-505701</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Low dimensional systems, nanowires (NWs), in particular, have exhibited excellent optical and electronic properties. Understanding the thermal properties in semiconductor NWs is very important for their applications in electronic devices. In the present study, the thermal conductivity of a freestanding silicon NW is estimated by employing Raman spectroscopy. The advantage of this technique is that the excitation source (laser) acts as both the heater and probe. The variations of the first-order Raman peak position of the freestanding silicon NW with respect to temperature and laser power are recorded. From the analysis of effective laser power absorbed by exposed silicon NW and a detailed Raman study along with the concept of longitudinal heat distribution in silicon NW, the thermal conductivity of the freestanding silicon NW of ∼112 nm diameter is estimated to be ∼53 W m−1 K− 1.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>33021235</pmid><doi>10.1088/1361-6528/abb42c</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3060-2104</orcidid><orcidid>https://orcid.org/0000-0002-9842-2281</orcidid><orcidid>https://orcid.org/0000-0002-1080-4091</orcidid><orcidid>https://orcid.org/0000-0001-5578-8956</orcidid><orcidid>https://orcid.org/0000-0002-6627-3410</orcidid><orcidid>https://orcid.org/0000-0001-9766-3713</orcidid><orcidid>https://orcid.org/0000-0002-7748-1469</orcidid><orcidid>https://orcid.org/0000-0001-5819-730X</orcidid><orcidid>https://orcid.org/0000-0002-1956-7248</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2020-12, Vol.31 (50), p.505701-505701 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_proquest_miscellaneous_2448852029 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | nanowire phonon Raman spectroscopy silicon thermal conductivity thermoelectric |
title | Thermal conductivity of free-standing silicon nanowire using Raman spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20of%20free-standing%20silicon%20nanowire%20using%20Raman%20spectroscopy&rft.jtitle=Nanotechnology&rft.au=Sahoo,%20Sandhyarani&rft.date=2020-12-11&rft.volume=31&rft.issue=50&rft.spage=505701&rft.epage=505701&rft.pages=505701-505701&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/abb42c&rft_dat=%3Cproquest_cross%3E2448852029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448852029&rft_id=info:pmid/33021235&rfr_iscdi=true |