The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique
Bone tissue plays an important role in supporting and protecting the structure and function of the human body. Bone defects are a common source of injury and there are many reconstruction challenges in clinical practice. However, 3D bioprinting of scaffolds provides a promising solution. Hydrogels h...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2021-07, Vol.109 (7), p.1209-1219 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1219 |
---|---|
container_issue | 7 |
container_start_page | 1209 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 109 |
creator | Tian, Yinping Liu, Minyi Liu, Yaoyao Shi, Changzheng Wang, Yayu Liu, Tong Huang, Yi Zhong, Peihua Dai, Jian Liu, Xiangning |
description | Bone tissue plays an important role in supporting and protecting the structure and function of the human body. Bone defects are a common source of injury and there are many reconstruction challenges in clinical practice. However, 3D bioprinting of scaffolds provides a promising solution. Hydrogels have emerged as biomaterials with good biocompatibility and are now widely used as cell‐loaded materials for bioprinting. This study involved three steps: First, sodium alginate (SA), gelatin (Gel), and nano‐hydroxyapatite (na‐HA) were mixed into a hydrogel and its rheological properties assessed to identify the optimum slurry for printing. Second, SA/Gel/na‐HA bioscaffolds were printed using 3D bioprinting technology and their physical properties characterized for surface morphology, swelling, and mechanical properties. Finally, human periodontal ligament stem cells (hPDLSCs) were mixed with SA/Gel/na‐HA printing slurry to create a “bioink” to prepare SA/Gel/na‐HA/ hPDLSCs cell bioscaffolds. These were tested for biocompatibility and osteogenic differentiation performance using live/dead cell staining, cell adhesion, cell proliferation, and alkaline phosphatase activity. The SA/Gel/na‐HA hydrogel exhibited shear‐thinning behavior. The equilibrium swelling of the bioscaffold was 125.9%, the compression stress was 0.671 MPa, and the compression elastic modulus was 8.27 MPa. The SA/Gel/na‐HA/hPDLSCs cell bioscaffolds caused effective stimulation of cell survival, proliferation, and osteoblast differentiation. Therefore, the SA/Gel/na‐HA/hPDLSCs cell bioscaffolds displayed potential as a material for bone defect reconstruction. |
doi_str_mv | 10.1002/jbm.a.37114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2448850580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448850580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4044-accfe1896d8434e19cc72b870ab964e628b3237333dd5e57542e5154a21702f3</originalsourceid><addsrcrecordid>eNp90Dtv2zAUBWCiaFDn0al7QaBLgEAuefmQNCZu06RIkcU7QVFXtgyJdEQJQf59qNrNkKETOXz3kPcQ8oWzJWcMvu-qfmmXIudcfiCnXCnIZKnVx_kuy0xAqRfkLMZdwpop-EQWQjDgTMMp2ay3SPc4NGHorXdIQ0PFD1q1ITrbNKGrW7-hlY1Y0-CppdspuXmiDXXwo-1o125sj36kccSeOuw6uh9aP86DI7qtb58mvCAnje0ifj6e52R9-3O9usseHn_dr64fMieZlJl1rkFelLoupJDIS-dyqIqc2arUEjUUlQCRCyHqWqHKlQRUaU0LPGfQiHNyeYjdDyG9GkfTt3H-kvUYpmhAyqJQTBUs0W_v6C5Mg0-fM6AARClB66SuDsoNIcYBG5N26-3wYjgzc_0m1W-s-Vt_0l-PmVPVY_1m__WdABzAc9vhy_-yzO-bP9eH1Fd_Eo8a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522394266</pqid></control><display><type>article</type><title>The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tian, Yinping ; Liu, Minyi ; Liu, Yaoyao ; Shi, Changzheng ; Wang, Yayu ; Liu, Tong ; Huang, Yi ; Zhong, Peihua ; Dai, Jian ; Liu, Xiangning</creator><creatorcontrib>Tian, Yinping ; Liu, Minyi ; Liu, Yaoyao ; Shi, Changzheng ; Wang, Yayu ; Liu, Tong ; Huang, Yi ; Zhong, Peihua ; Dai, Jian ; Liu, Xiangning</creatorcontrib><description>Bone tissue plays an important role in supporting and protecting the structure and function of the human body. Bone defects are a common source of injury and there are many reconstruction challenges in clinical practice. However, 3D bioprinting of scaffolds provides a promising solution. Hydrogels have emerged as biomaterials with good biocompatibility and are now widely used as cell‐loaded materials for bioprinting. This study involved three steps: First, sodium alginate (SA), gelatin (Gel), and nano‐hydroxyapatite (na‐HA) were mixed into a hydrogel and its rheological properties assessed to identify the optimum slurry for printing. Second, SA/Gel/na‐HA bioscaffolds were printed using 3D bioprinting technology and their physical properties characterized for surface morphology, swelling, and mechanical properties. Finally, human periodontal ligament stem cells (hPDLSCs) were mixed with SA/Gel/na‐HA printing slurry to create a “bioink” to prepare SA/Gel/na‐HA/ hPDLSCs cell bioscaffolds. These were tested for biocompatibility and osteogenic differentiation performance using live/dead cell staining, cell adhesion, cell proliferation, and alkaline phosphatase activity. The SA/Gel/na‐HA hydrogel exhibited shear‐thinning behavior. The equilibrium swelling of the bioscaffold was 125.9%, the compression stress was 0.671 MPa, and the compression elastic modulus was 8.27 MPa. The SA/Gel/na‐HA/hPDLSCs cell bioscaffolds caused effective stimulation of cell survival, proliferation, and osteoblast differentiation. Therefore, the SA/Gel/na‐HA/hPDLSCs cell bioscaffolds displayed potential as a material for bone defect reconstruction.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.37114</identifier><identifier>PMID: 33021062</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>3-D printers ; 3D bioprinting ; Alginates - chemistry ; Alginic acid ; Alkaline phosphatase ; Biocompatibility ; bioink ; Biomaterials ; Biomedical materials ; Bioprinting - methods ; Cell adhesion ; cell bioscaffolds ; Cell differentiation ; Cell proliferation ; Cell survival ; Cells, Cultured ; Compression ; Cytology ; Differentiation (biology) ; Durapatite - chemistry ; Gelatin ; Gelatin - chemistry ; human periodontal ligament stem cells ; Humans ; Hydrogels ; Hydrogels - chemistry ; Hydroxyapatite ; Ligaments ; Mechanical properties ; Modulus of elasticity ; Morphology ; Osteoblastogenesis ; Osteogenesis ; Periodontal ligament ; Periodontal Ligament - cytology ; Physical properties ; Printing ; Printing, Three-Dimensional ; Reconstruction ; Rheological properties ; Slurries ; Sodium alginate ; Stem cells ; Stem Cells - cytology ; Structure-function relationships ; Swelling ; Three dimensional printing ; Tissue Engineering ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2021-07, Vol.109 (7), p.1209-1219</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2020 Wiley Periodicals LLC.</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4044-accfe1896d8434e19cc72b870ab964e628b3237333dd5e57542e5154a21702f3</citedby><cites>FETCH-LOGICAL-c4044-accfe1896d8434e19cc72b870ab964e628b3237333dd5e57542e5154a21702f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.37114$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.37114$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33021062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Yinping</creatorcontrib><creatorcontrib>Liu, Minyi</creatorcontrib><creatorcontrib>Liu, Yaoyao</creatorcontrib><creatorcontrib>Shi, Changzheng</creatorcontrib><creatorcontrib>Wang, Yayu</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Huang, Yi</creatorcontrib><creatorcontrib>Zhong, Peihua</creatorcontrib><creatorcontrib>Dai, Jian</creatorcontrib><creatorcontrib>Liu, Xiangning</creatorcontrib><title>The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Bone tissue plays an important role in supporting and protecting the structure and function of the human body. Bone defects are a common source of injury and there are many reconstruction challenges in clinical practice. However, 3D bioprinting of scaffolds provides a promising solution. Hydrogels have emerged as biomaterials with good biocompatibility and are now widely used as cell‐loaded materials for bioprinting. This study involved three steps: First, sodium alginate (SA), gelatin (Gel), and nano‐hydroxyapatite (na‐HA) were mixed into a hydrogel and its rheological properties assessed to identify the optimum slurry for printing. Second, SA/Gel/na‐HA bioscaffolds were printed using 3D bioprinting technology and their physical properties characterized for surface morphology, swelling, and mechanical properties. Finally, human periodontal ligament stem cells (hPDLSCs) were mixed with SA/Gel/na‐HA printing slurry to create a “bioink” to prepare SA/Gel/na‐HA/ hPDLSCs cell bioscaffolds. These were tested for biocompatibility and osteogenic differentiation performance using live/dead cell staining, cell adhesion, cell proliferation, and alkaline phosphatase activity. The SA/Gel/na‐HA hydrogel exhibited shear‐thinning behavior. The equilibrium swelling of the bioscaffold was 125.9%, the compression stress was 0.671 MPa, and the compression elastic modulus was 8.27 MPa. The SA/Gel/na‐HA/hPDLSCs cell bioscaffolds caused effective stimulation of cell survival, proliferation, and osteoblast differentiation. Therefore, the SA/Gel/na‐HA/hPDLSCs cell bioscaffolds displayed potential as a material for bone defect reconstruction.</description><subject>3-D printers</subject><subject>3D bioprinting</subject><subject>Alginates - chemistry</subject><subject>Alginic acid</subject><subject>Alkaline phosphatase</subject><subject>Biocompatibility</subject><subject>bioink</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Bioprinting - methods</subject><subject>Cell adhesion</subject><subject>cell bioscaffolds</subject><subject>Cell differentiation</subject><subject>Cell proliferation</subject><subject>Cell survival</subject><subject>Cells, Cultured</subject><subject>Compression</subject><subject>Cytology</subject><subject>Differentiation (biology)</subject><subject>Durapatite - chemistry</subject><subject>Gelatin</subject><subject>Gelatin - chemistry</subject><subject>human periodontal ligament stem cells</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Hydroxyapatite</subject><subject>Ligaments</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Morphology</subject><subject>Osteoblastogenesis</subject><subject>Osteogenesis</subject><subject>Periodontal ligament</subject><subject>Periodontal Ligament - cytology</subject><subject>Physical properties</subject><subject>Printing</subject><subject>Printing, Three-Dimensional</subject><subject>Reconstruction</subject><subject>Rheological properties</subject><subject>Slurries</subject><subject>Sodium alginate</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Structure-function relationships</subject><subject>Swelling</subject><subject>Three dimensional printing</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90Dtv2zAUBWCiaFDn0al7QaBLgEAuefmQNCZu06RIkcU7QVFXtgyJdEQJQf59qNrNkKETOXz3kPcQ8oWzJWcMvu-qfmmXIudcfiCnXCnIZKnVx_kuy0xAqRfkLMZdwpop-EQWQjDgTMMp2ay3SPc4NGHorXdIQ0PFD1q1ITrbNKGrW7-hlY1Y0-CppdspuXmiDXXwo-1o125sj36kccSeOuw6uh9aP86DI7qtb58mvCAnje0ifj6e52R9-3O9usseHn_dr64fMieZlJl1rkFelLoupJDIS-dyqIqc2arUEjUUlQCRCyHqWqHKlQRUaU0LPGfQiHNyeYjdDyG9GkfTt3H-kvUYpmhAyqJQTBUs0W_v6C5Mg0-fM6AARClB66SuDsoNIcYBG5N26-3wYjgzc_0m1W-s-Vt_0l-PmVPVY_1m__WdABzAc9vhy_-yzO-bP9eH1Fd_Eo8a</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Tian, Yinping</creator><creator>Liu, Minyi</creator><creator>Liu, Yaoyao</creator><creator>Shi, Changzheng</creator><creator>Wang, Yayu</creator><creator>Liu, Tong</creator><creator>Huang, Yi</creator><creator>Zhong, Peihua</creator><creator>Dai, Jian</creator><creator>Liu, Xiangning</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202107</creationdate><title>The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique</title><author>Tian, Yinping ; Liu, Minyi ; Liu, Yaoyao ; Shi, Changzheng ; Wang, Yayu ; Liu, Tong ; Huang, Yi ; Zhong, Peihua ; Dai, Jian ; Liu, Xiangning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4044-accfe1896d8434e19cc72b870ab964e628b3237333dd5e57542e5154a21702f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>3D bioprinting</topic><topic>Alginates - chemistry</topic><topic>Alginic acid</topic><topic>Alkaline phosphatase</topic><topic>Biocompatibility</topic><topic>bioink</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Bioprinting - methods</topic><topic>Cell adhesion</topic><topic>cell bioscaffolds</topic><topic>Cell differentiation</topic><topic>Cell proliferation</topic><topic>Cell survival</topic><topic>Cells, Cultured</topic><topic>Compression</topic><topic>Cytology</topic><topic>Differentiation (biology)</topic><topic>Durapatite - chemistry</topic><topic>Gelatin</topic><topic>Gelatin - chemistry</topic><topic>human periodontal ligament stem cells</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Hydroxyapatite</topic><topic>Ligaments</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Morphology</topic><topic>Osteoblastogenesis</topic><topic>Osteogenesis</topic><topic>Periodontal ligament</topic><topic>Periodontal Ligament - cytology</topic><topic>Physical properties</topic><topic>Printing</topic><topic>Printing, Three-Dimensional</topic><topic>Reconstruction</topic><topic>Rheological properties</topic><topic>Slurries</topic><topic>Sodium alginate</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Structure-function relationships</topic><topic>Swelling</topic><topic>Three dimensional printing</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Yinping</creatorcontrib><creatorcontrib>Liu, Minyi</creatorcontrib><creatorcontrib>Liu, Yaoyao</creatorcontrib><creatorcontrib>Shi, Changzheng</creatorcontrib><creatorcontrib>Wang, Yayu</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Huang, Yi</creatorcontrib><creatorcontrib>Zhong, Peihua</creatorcontrib><creatorcontrib>Dai, Jian</creatorcontrib><creatorcontrib>Liu, Xiangning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Yinping</au><au>Liu, Minyi</au><au>Liu, Yaoyao</au><au>Shi, Changzheng</au><au>Wang, Yayu</au><au>Liu, Tong</au><au>Huang, Yi</au><au>Zhong, Peihua</au><au>Dai, Jian</au><au>Liu, Xiangning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2021-07</date><risdate>2021</risdate><volume>109</volume><issue>7</issue><spage>1209</spage><epage>1219</epage><pages>1209-1219</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Bone tissue plays an important role in supporting and protecting the structure and function of the human body. Bone defects are a common source of injury and there are many reconstruction challenges in clinical practice. However, 3D bioprinting of scaffolds provides a promising solution. Hydrogels have emerged as biomaterials with good biocompatibility and are now widely used as cell‐loaded materials for bioprinting. This study involved three steps: First, sodium alginate (SA), gelatin (Gel), and nano‐hydroxyapatite (na‐HA) were mixed into a hydrogel and its rheological properties assessed to identify the optimum slurry for printing. Second, SA/Gel/na‐HA bioscaffolds were printed using 3D bioprinting technology and their physical properties characterized for surface morphology, swelling, and mechanical properties. Finally, human periodontal ligament stem cells (hPDLSCs) were mixed with SA/Gel/na‐HA printing slurry to create a “bioink” to prepare SA/Gel/na‐HA/ hPDLSCs cell bioscaffolds. These were tested for biocompatibility and osteogenic differentiation performance using live/dead cell staining, cell adhesion, cell proliferation, and alkaline phosphatase activity. The SA/Gel/na‐HA hydrogel exhibited shear‐thinning behavior. The equilibrium swelling of the bioscaffold was 125.9%, the compression stress was 0.671 MPa, and the compression elastic modulus was 8.27 MPa. The SA/Gel/na‐HA/hPDLSCs cell bioscaffolds caused effective stimulation of cell survival, proliferation, and osteoblast differentiation. Therefore, the SA/Gel/na‐HA/hPDLSCs cell bioscaffolds displayed potential as a material for bone defect reconstruction.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>33021062</pmid><doi>10.1002/jbm.a.37114</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2021-07, Vol.109 (7), p.1209-1219 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_2448850580 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | 3-D printers 3D bioprinting Alginates - chemistry Alginic acid Alkaline phosphatase Biocompatibility bioink Biomaterials Biomedical materials Bioprinting - methods Cell adhesion cell bioscaffolds Cell differentiation Cell proliferation Cell survival Cells, Cultured Compression Cytology Differentiation (biology) Durapatite - chemistry Gelatin Gelatin - chemistry human periodontal ligament stem cells Humans Hydrogels Hydrogels - chemistry Hydroxyapatite Ligaments Mechanical properties Modulus of elasticity Morphology Osteoblastogenesis Osteogenesis Periodontal ligament Periodontal Ligament - cytology Physical properties Printing Printing, Three-Dimensional Reconstruction Rheological properties Slurries Sodium alginate Stem cells Stem Cells - cytology Structure-function relationships Swelling Three dimensional printing Tissue Engineering Tissue Scaffolds - chemistry |
title | The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A06%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20performance%20of%203D%20bioscaffolding%20based%20on%20a%20human%20periodontal%20ligament%20stem%20cell%20printing%20technique&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Tian,%20Yinping&rft.date=2021-07&rft.volume=109&rft.issue=7&rft.spage=1209&rft.epage=1219&rft.pages=1209-1219&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.37114&rft_dat=%3Cproquest_cross%3E2448850580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522394266&rft_id=info:pmid/33021062&rfr_iscdi=true |