The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique

Bone tissue plays an important role in supporting and protecting the structure and function of the human body. Bone defects are a common source of injury and there are many reconstruction challenges in clinical practice. However, 3D bioprinting of scaffolds provides a promising solution. Hydrogels h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2021-07, Vol.109 (7), p.1209-1219
Hauptverfasser: Tian, Yinping, Liu, Minyi, Liu, Yaoyao, Shi, Changzheng, Wang, Yayu, Liu, Tong, Huang, Yi, Zhong, Peihua, Dai, Jian, Liu, Xiangning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1219
container_issue 7
container_start_page 1209
container_title Journal of biomedical materials research. Part A
container_volume 109
creator Tian, Yinping
Liu, Minyi
Liu, Yaoyao
Shi, Changzheng
Wang, Yayu
Liu, Tong
Huang, Yi
Zhong, Peihua
Dai, Jian
Liu, Xiangning
description Bone tissue plays an important role in supporting and protecting the structure and function of the human body. Bone defects are a common source of injury and there are many reconstruction challenges in clinical practice. However, 3D bioprinting of scaffolds provides a promising solution. Hydrogels have emerged as biomaterials with good biocompatibility and are now widely used as cell‐loaded materials for bioprinting. This study involved three steps: First, sodium alginate (SA), gelatin (Gel), and nano‐hydroxyapatite (na‐HA) were mixed into a hydrogel and its rheological properties assessed to identify the optimum slurry for printing. Second, SA/Gel/na‐HA bioscaffolds were printed using 3D bioprinting technology and their physical properties characterized for surface morphology, swelling, and mechanical properties. Finally, human periodontal ligament stem cells (hPDLSCs) were mixed with SA/Gel/na‐HA printing slurry to create a “bioink” to prepare SA/Gel/na‐HA/ hPDLSCs cell bioscaffolds. These were tested for biocompatibility and osteogenic differentiation performance using live/dead cell staining, cell adhesion, cell proliferation, and alkaline phosphatase activity. The SA/Gel/na‐HA hydrogel exhibited shear‐thinning behavior. The equilibrium swelling of the bioscaffold was 125.9%, the compression stress was 0.671 MPa, and the compression elastic modulus was 8.27 MPa. The SA/Gel/na‐HA/hPDLSCs cell bioscaffolds caused effective stimulation of cell survival, proliferation, and osteoblast differentiation. Therefore, the SA/Gel/na‐HA/hPDLSCs cell bioscaffolds displayed potential as a material for bone defect reconstruction.
doi_str_mv 10.1002/jbm.a.37114
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2448850580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448850580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4044-accfe1896d8434e19cc72b870ab964e628b3237333dd5e57542e5154a21702f3</originalsourceid><addsrcrecordid>eNp90Dtv2zAUBWCiaFDn0al7QaBLgEAuefmQNCZu06RIkcU7QVFXtgyJdEQJQf59qNrNkKETOXz3kPcQ8oWzJWcMvu-qfmmXIudcfiCnXCnIZKnVx_kuy0xAqRfkLMZdwpop-EQWQjDgTMMp2ay3SPc4NGHorXdIQ0PFD1q1ITrbNKGrW7-hlY1Y0-CppdspuXmiDXXwo-1o125sj36kccSeOuw6uh9aP86DI7qtb58mvCAnje0ifj6e52R9-3O9usseHn_dr64fMieZlJl1rkFelLoupJDIS-dyqIqc2arUEjUUlQCRCyHqWqHKlQRUaU0LPGfQiHNyeYjdDyG9GkfTt3H-kvUYpmhAyqJQTBUs0W_v6C5Mg0-fM6AARClB66SuDsoNIcYBG5N26-3wYjgzc_0m1W-s-Vt_0l-PmVPVY_1m__WdABzAc9vhy_-yzO-bP9eH1Fd_Eo8a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522394266</pqid></control><display><type>article</type><title>The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tian, Yinping ; Liu, Minyi ; Liu, Yaoyao ; Shi, Changzheng ; Wang, Yayu ; Liu, Tong ; Huang, Yi ; Zhong, Peihua ; Dai, Jian ; Liu, Xiangning</creator><creatorcontrib>Tian, Yinping ; Liu, Minyi ; Liu, Yaoyao ; Shi, Changzheng ; Wang, Yayu ; Liu, Tong ; Huang, Yi ; Zhong, Peihua ; Dai, Jian ; Liu, Xiangning</creatorcontrib><description>Bone tissue plays an important role in supporting and protecting the structure and function of the human body. Bone defects are a common source of injury and there are many reconstruction challenges in clinical practice. However, 3D bioprinting of scaffolds provides a promising solution. Hydrogels have emerged as biomaterials with good biocompatibility and are now widely used as cell‐loaded materials for bioprinting. This study involved three steps: First, sodium alginate (SA), gelatin (Gel), and nano‐hydroxyapatite (na‐HA) were mixed into a hydrogel and its rheological properties assessed to identify the optimum slurry for printing. Second, SA/Gel/na‐HA bioscaffolds were printed using 3D bioprinting technology and their physical properties characterized for surface morphology, swelling, and mechanical properties. Finally, human periodontal ligament stem cells (hPDLSCs) were mixed with SA/Gel/na‐HA printing slurry to create a “bioink” to prepare SA/Gel/na‐HA/ hPDLSCs cell bioscaffolds. These were tested for biocompatibility and osteogenic differentiation performance using live/dead cell staining, cell adhesion, cell proliferation, and alkaline phosphatase activity. The SA/Gel/na‐HA hydrogel exhibited shear‐thinning behavior. The equilibrium swelling of the bioscaffold was 125.9%, the compression stress was 0.671 MPa, and the compression elastic modulus was 8.27 MPa. The SA/Gel/na‐HA/hPDLSCs cell bioscaffolds caused effective stimulation of cell survival, proliferation, and osteoblast differentiation. Therefore, the SA/Gel/na‐HA/hPDLSCs cell bioscaffolds displayed potential as a material for bone defect reconstruction.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.37114</identifier><identifier>PMID: 33021062</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>3-D printers ; 3D bioprinting ; Alginates - chemistry ; Alginic acid ; Alkaline phosphatase ; Biocompatibility ; bioink ; Biomaterials ; Biomedical materials ; Bioprinting - methods ; Cell adhesion ; cell bioscaffolds ; Cell differentiation ; Cell proliferation ; Cell survival ; Cells, Cultured ; Compression ; Cytology ; Differentiation (biology) ; Durapatite - chemistry ; Gelatin ; Gelatin - chemistry ; human periodontal ligament stem cells ; Humans ; Hydrogels ; Hydrogels - chemistry ; Hydroxyapatite ; Ligaments ; Mechanical properties ; Modulus of elasticity ; Morphology ; Osteoblastogenesis ; Osteogenesis ; Periodontal ligament ; Periodontal Ligament - cytology ; Physical properties ; Printing ; Printing, Three-Dimensional ; Reconstruction ; Rheological properties ; Slurries ; Sodium alginate ; Stem cells ; Stem Cells - cytology ; Structure-function relationships ; Swelling ; Three dimensional printing ; Tissue Engineering ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2021-07, Vol.109 (7), p.1209-1219</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2020 Wiley Periodicals LLC.</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4044-accfe1896d8434e19cc72b870ab964e628b3237333dd5e57542e5154a21702f3</citedby><cites>FETCH-LOGICAL-c4044-accfe1896d8434e19cc72b870ab964e628b3237333dd5e57542e5154a21702f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.37114$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.37114$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33021062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Yinping</creatorcontrib><creatorcontrib>Liu, Minyi</creatorcontrib><creatorcontrib>Liu, Yaoyao</creatorcontrib><creatorcontrib>Shi, Changzheng</creatorcontrib><creatorcontrib>Wang, Yayu</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Huang, Yi</creatorcontrib><creatorcontrib>Zhong, Peihua</creatorcontrib><creatorcontrib>Dai, Jian</creatorcontrib><creatorcontrib>Liu, Xiangning</creatorcontrib><title>The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Bone tissue plays an important role in supporting and protecting the structure and function of the human body. Bone defects are a common source of injury and there are many reconstruction challenges in clinical practice. However, 3D bioprinting of scaffolds provides a promising solution. Hydrogels have emerged as biomaterials with good biocompatibility and are now widely used as cell‐loaded materials for bioprinting. This study involved three steps: First, sodium alginate (SA), gelatin (Gel), and nano‐hydroxyapatite (na‐HA) were mixed into a hydrogel and its rheological properties assessed to identify the optimum slurry for printing. Second, SA/Gel/na‐HA bioscaffolds were printed using 3D bioprinting technology and their physical properties characterized for surface morphology, swelling, and mechanical properties. Finally, human periodontal ligament stem cells (hPDLSCs) were mixed with SA/Gel/na‐HA printing slurry to create a “bioink” to prepare SA/Gel/na‐HA/ hPDLSCs cell bioscaffolds. These were tested for biocompatibility and osteogenic differentiation performance using live/dead cell staining, cell adhesion, cell proliferation, and alkaline phosphatase activity. The SA/Gel/na‐HA hydrogel exhibited shear‐thinning behavior. The equilibrium swelling of the bioscaffold was 125.9%, the compression stress was 0.671 MPa, and the compression elastic modulus was 8.27 MPa. The SA/Gel/na‐HA/hPDLSCs cell bioscaffolds caused effective stimulation of cell survival, proliferation, and osteoblast differentiation. Therefore, the SA/Gel/na‐HA/hPDLSCs cell bioscaffolds displayed potential as a material for bone defect reconstruction.</description><subject>3-D printers</subject><subject>3D bioprinting</subject><subject>Alginates - chemistry</subject><subject>Alginic acid</subject><subject>Alkaline phosphatase</subject><subject>Biocompatibility</subject><subject>bioink</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Bioprinting - methods</subject><subject>Cell adhesion</subject><subject>cell bioscaffolds</subject><subject>Cell differentiation</subject><subject>Cell proliferation</subject><subject>Cell survival</subject><subject>Cells, Cultured</subject><subject>Compression</subject><subject>Cytology</subject><subject>Differentiation (biology)</subject><subject>Durapatite - chemistry</subject><subject>Gelatin</subject><subject>Gelatin - chemistry</subject><subject>human periodontal ligament stem cells</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Hydroxyapatite</subject><subject>Ligaments</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Morphology</subject><subject>Osteoblastogenesis</subject><subject>Osteogenesis</subject><subject>Periodontal ligament</subject><subject>Periodontal Ligament - cytology</subject><subject>Physical properties</subject><subject>Printing</subject><subject>Printing, Three-Dimensional</subject><subject>Reconstruction</subject><subject>Rheological properties</subject><subject>Slurries</subject><subject>Sodium alginate</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Structure-function relationships</subject><subject>Swelling</subject><subject>Three dimensional printing</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90Dtv2zAUBWCiaFDn0al7QaBLgEAuefmQNCZu06RIkcU7QVFXtgyJdEQJQf59qNrNkKETOXz3kPcQ8oWzJWcMvu-qfmmXIudcfiCnXCnIZKnVx_kuy0xAqRfkLMZdwpop-EQWQjDgTMMp2ay3SPc4NGHorXdIQ0PFD1q1ITrbNKGrW7-hlY1Y0-CppdspuXmiDXXwo-1o125sj36kccSeOuw6uh9aP86DI7qtb58mvCAnje0ifj6e52R9-3O9usseHn_dr64fMieZlJl1rkFelLoupJDIS-dyqIqc2arUEjUUlQCRCyHqWqHKlQRUaU0LPGfQiHNyeYjdDyG9GkfTt3H-kvUYpmhAyqJQTBUs0W_v6C5Mg0-fM6AARClB66SuDsoNIcYBG5N26-3wYjgzc_0m1W-s-Vt_0l-PmVPVY_1m__WdABzAc9vhy_-yzO-bP9eH1Fd_Eo8a</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Tian, Yinping</creator><creator>Liu, Minyi</creator><creator>Liu, Yaoyao</creator><creator>Shi, Changzheng</creator><creator>Wang, Yayu</creator><creator>Liu, Tong</creator><creator>Huang, Yi</creator><creator>Zhong, Peihua</creator><creator>Dai, Jian</creator><creator>Liu, Xiangning</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202107</creationdate><title>The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique</title><author>Tian, Yinping ; Liu, Minyi ; Liu, Yaoyao ; Shi, Changzheng ; Wang, Yayu ; Liu, Tong ; Huang, Yi ; Zhong, Peihua ; Dai, Jian ; Liu, Xiangning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4044-accfe1896d8434e19cc72b870ab964e628b3237333dd5e57542e5154a21702f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>3D bioprinting</topic><topic>Alginates - chemistry</topic><topic>Alginic acid</topic><topic>Alkaline phosphatase</topic><topic>Biocompatibility</topic><topic>bioink</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Bioprinting - methods</topic><topic>Cell adhesion</topic><topic>cell bioscaffolds</topic><topic>Cell differentiation</topic><topic>Cell proliferation</topic><topic>Cell survival</topic><topic>Cells, Cultured</topic><topic>Compression</topic><topic>Cytology</topic><topic>Differentiation (biology)</topic><topic>Durapatite - chemistry</topic><topic>Gelatin</topic><topic>Gelatin - chemistry</topic><topic>human periodontal ligament stem cells</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Hydroxyapatite</topic><topic>Ligaments</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Morphology</topic><topic>Osteoblastogenesis</topic><topic>Osteogenesis</topic><topic>Periodontal ligament</topic><topic>Periodontal Ligament - cytology</topic><topic>Physical properties</topic><topic>Printing</topic><topic>Printing, Three-Dimensional</topic><topic>Reconstruction</topic><topic>Rheological properties</topic><topic>Slurries</topic><topic>Sodium alginate</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Structure-function relationships</topic><topic>Swelling</topic><topic>Three dimensional printing</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Yinping</creatorcontrib><creatorcontrib>Liu, Minyi</creatorcontrib><creatorcontrib>Liu, Yaoyao</creatorcontrib><creatorcontrib>Shi, Changzheng</creatorcontrib><creatorcontrib>Wang, Yayu</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Huang, Yi</creatorcontrib><creatorcontrib>Zhong, Peihua</creatorcontrib><creatorcontrib>Dai, Jian</creatorcontrib><creatorcontrib>Liu, Xiangning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Yinping</au><au>Liu, Minyi</au><au>Liu, Yaoyao</au><au>Shi, Changzheng</au><au>Wang, Yayu</au><au>Liu, Tong</au><au>Huang, Yi</au><au>Zhong, Peihua</au><au>Dai, Jian</au><au>Liu, Xiangning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2021-07</date><risdate>2021</risdate><volume>109</volume><issue>7</issue><spage>1209</spage><epage>1219</epage><pages>1209-1219</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Bone tissue plays an important role in supporting and protecting the structure and function of the human body. Bone defects are a common source of injury and there are many reconstruction challenges in clinical practice. However, 3D bioprinting of scaffolds provides a promising solution. Hydrogels have emerged as biomaterials with good biocompatibility and are now widely used as cell‐loaded materials for bioprinting. This study involved three steps: First, sodium alginate (SA), gelatin (Gel), and nano‐hydroxyapatite (na‐HA) were mixed into a hydrogel and its rheological properties assessed to identify the optimum slurry for printing. Second, SA/Gel/na‐HA bioscaffolds were printed using 3D bioprinting technology and their physical properties characterized for surface morphology, swelling, and mechanical properties. Finally, human periodontal ligament stem cells (hPDLSCs) were mixed with SA/Gel/na‐HA printing slurry to create a “bioink” to prepare SA/Gel/na‐HA/ hPDLSCs cell bioscaffolds. These were tested for biocompatibility and osteogenic differentiation performance using live/dead cell staining, cell adhesion, cell proliferation, and alkaline phosphatase activity. The SA/Gel/na‐HA hydrogel exhibited shear‐thinning behavior. The equilibrium swelling of the bioscaffold was 125.9%, the compression stress was 0.671 MPa, and the compression elastic modulus was 8.27 MPa. The SA/Gel/na‐HA/hPDLSCs cell bioscaffolds caused effective stimulation of cell survival, proliferation, and osteoblast differentiation. Therefore, the SA/Gel/na‐HA/hPDLSCs cell bioscaffolds displayed potential as a material for bone defect reconstruction.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33021062</pmid><doi>10.1002/jbm.a.37114</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2021-07, Vol.109 (7), p.1209-1219
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_2448850580
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 3-D printers
3D bioprinting
Alginates - chemistry
Alginic acid
Alkaline phosphatase
Biocompatibility
bioink
Biomaterials
Biomedical materials
Bioprinting - methods
Cell adhesion
cell bioscaffolds
Cell differentiation
Cell proliferation
Cell survival
Cells, Cultured
Compression
Cytology
Differentiation (biology)
Durapatite - chemistry
Gelatin
Gelatin - chemistry
human periodontal ligament stem cells
Humans
Hydrogels
Hydrogels - chemistry
Hydroxyapatite
Ligaments
Mechanical properties
Modulus of elasticity
Morphology
Osteoblastogenesis
Osteogenesis
Periodontal ligament
Periodontal Ligament - cytology
Physical properties
Printing
Printing, Three-Dimensional
Reconstruction
Rheological properties
Slurries
Sodium alginate
Stem cells
Stem Cells - cytology
Structure-function relationships
Swelling
Three dimensional printing
Tissue Engineering
Tissue Scaffolds - chemistry
title The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A06%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20performance%20of%203D%20bioscaffolding%20based%20on%20a%20human%20periodontal%20ligament%20stem%20cell%20printing%20technique&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Tian,%20Yinping&rft.date=2021-07&rft.volume=109&rft.issue=7&rft.spage=1209&rft.epage=1219&rft.pages=1209-1219&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.37114&rft_dat=%3Cproquest_cross%3E2448850580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522394266&rft_id=info:pmid/33021062&rfr_iscdi=true