Miniaturized Circuitry for Capacitive Self-Sensing and Closed-Loop Control of Soft Electrostatic Transducers

Soft robotics is a field of robotic system design characterized by materials and structures that exhibit large-scale deformation, high compliance, and rich multifunctionality. The incorporation of soft and deformable structures endows soft robotic systems with the compliance and resiliency that make...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft robotics 2021-12, Vol.8 (6), p.673-686
Hauptverfasser: Ly, Khoi, Kellaris, Nicholas, McMorris, Dade, Johnson, Brian K, Acome, Eric, Sundaram, Vani, Naris, Mantas, Humbert, J Sean, Rentschler, Mark E, Keplinger, Christoph, Correll, Nikolaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 686
container_issue 6
container_start_page 673
container_title Soft robotics
container_volume 8
creator Ly, Khoi
Kellaris, Nicholas
McMorris, Dade
Johnson, Brian K
Acome, Eric
Sundaram, Vani
Naris, Mantas
Humbert, J Sean
Rentschler, Mark E
Keplinger, Christoph
Correll, Nikolaus
description Soft robotics is a field of robotic system design characterized by materials and structures that exhibit large-scale deformation, high compliance, and rich multifunctionality. The incorporation of soft and deformable structures endows soft robotic systems with the compliance and resiliency that makes them well adapted for unstructured and dynamic environments. Although actuation mechanisms for soft robots vary widely, soft electrostatic transducers such as dielectric elastomer actuators (DEAs) and hydraulically amplified self-healing electrostatic (HASEL) actuators have demonstrated promise due to their muscle-like performance and capacitive self-sensing capabilities. Despite previous efforts to implement self-sensing in electrostatic transducers by overlaying sinusoidal low-voltage signals, these designs still require sensing high-voltage signals, requiring bulky components that prevent integration with miniature untethered soft robots. We present a circuit design that eliminates the need for any high-voltage sensing components, thereby facilitating the design of simple low cost circuits using off-the-shelf components. Using this circuit, we perform simultaneous sensing and actuation for a range of electrostatic transducers including circular DEAs and HASEL actuators and demonstrate accurate estimated displacements with errors
doi_str_mv 10.1089/soro.2020.0048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2448410210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448410210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-a04bd6592636b051a225b96b35103bd0a1b2847c61042b8d6b8d83e33581edb83</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVpScI21xyLjr14O_qwVz4Wk6aFDTlscjaSPC4qWmkryYX010dm01wrGCSGZ15GDyE3DLYMVP8lxxS3HDhsAaR6R6446_qmZQrev713_JJc5_wL6ul30DG4IJdCALCd5FfE37vgdFmS-4sTHVyyiyvpmc4x0UGftHXF_UF6QD83BwzZhZ9Uh0r6mHFq9jGe6BBDSdHTONNDnAu99WhrIxddnKWPSYc8LRZT_kg-zNpnvH69N-Tp2-3j8L3ZP9z9GL7uGysklEaDNFPX9rwTnYGWac5b03dGtAyEmUAzw5Xc2foXyY2aulpKoBCtYjgZJTbk8zn3lOLvBXMZjy5b9F4HjEseuZRKMuA1bkO2Z9TWhXPCeTwld9TpeWQwrpLHVfK4Sh5XyXXg02v2Yo44veH_lFZAnoG1rUPwDg2m8r_cFyueigE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448410210</pqid></control><display><type>article</type><title>Miniaturized Circuitry for Capacitive Self-Sensing and Closed-Loop Control of Soft Electrostatic Transducers</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Ly, Khoi ; Kellaris, Nicholas ; McMorris, Dade ; Johnson, Brian K ; Acome, Eric ; Sundaram, Vani ; Naris, Mantas ; Humbert, J Sean ; Rentschler, Mark E ; Keplinger, Christoph ; Correll, Nikolaus</creator><creatorcontrib>Ly, Khoi ; Kellaris, Nicholas ; McMorris, Dade ; Johnson, Brian K ; Acome, Eric ; Sundaram, Vani ; Naris, Mantas ; Humbert, J Sean ; Rentschler, Mark E ; Keplinger, Christoph ; Correll, Nikolaus</creatorcontrib><description>Soft robotics is a field of robotic system design characterized by materials and structures that exhibit large-scale deformation, high compliance, and rich multifunctionality. The incorporation of soft and deformable structures endows soft robotic systems with the compliance and resiliency that makes them well adapted for unstructured and dynamic environments. Although actuation mechanisms for soft robots vary widely, soft electrostatic transducers such as dielectric elastomer actuators (DEAs) and hydraulically amplified self-healing electrostatic (HASEL) actuators have demonstrated promise due to their muscle-like performance and capacitive self-sensing capabilities. Despite previous efforts to implement self-sensing in electrostatic transducers by overlaying sinusoidal low-voltage signals, these designs still require sensing high-voltage signals, requiring bulky components that prevent integration with miniature untethered soft robots. We present a circuit design that eliminates the need for any high-voltage sensing components, thereby facilitating the design of simple low cost circuits using off-the-shelf components. Using this circuit, we perform simultaneous sensing and actuation for a range of electrostatic transducers including circular DEAs and HASEL actuators and demonstrate accurate estimated displacements with errors &lt;4%. We further develop this circuit into a compact and portable system that couples high voltage actuation, sensing, and computation as a prototype toward untethered multifunctional soft robotic systems. Finally, we demonstrate the capabilities of our self-sensing design through feedback control of a robotic arm powered by Peano-HASEL actuators.</description><identifier>ISSN: 2169-5172</identifier><identifier>EISSN: 2169-5180</identifier><identifier>DOI: 10.1089/soro.2020.0048</identifier><identifier>PMID: 33001742</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc., publishers</publisher><subject>Muscles ; Musculoskeletal System ; Original Articles ; Robotics ; Static Electricity ; Transducers</subject><ispartof>Soft robotics, 2021-12, Vol.8 (6), p.673-686</ispartof><rights>2021, Mary Ann Liebert, Inc., publishers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-a04bd6592636b051a225b96b35103bd0a1b2847c61042b8d6b8d83e33581edb83</citedby><cites>FETCH-LOGICAL-c340t-a04bd6592636b051a225b96b35103bd0a1b2847c61042b8d6b8d83e33581edb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33001742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ly, Khoi</creatorcontrib><creatorcontrib>Kellaris, Nicholas</creatorcontrib><creatorcontrib>McMorris, Dade</creatorcontrib><creatorcontrib>Johnson, Brian K</creatorcontrib><creatorcontrib>Acome, Eric</creatorcontrib><creatorcontrib>Sundaram, Vani</creatorcontrib><creatorcontrib>Naris, Mantas</creatorcontrib><creatorcontrib>Humbert, J Sean</creatorcontrib><creatorcontrib>Rentschler, Mark E</creatorcontrib><creatorcontrib>Keplinger, Christoph</creatorcontrib><creatorcontrib>Correll, Nikolaus</creatorcontrib><title>Miniaturized Circuitry for Capacitive Self-Sensing and Closed-Loop Control of Soft Electrostatic Transducers</title><title>Soft robotics</title><addtitle>Soft Robot</addtitle><description>Soft robotics is a field of robotic system design characterized by materials and structures that exhibit large-scale deformation, high compliance, and rich multifunctionality. The incorporation of soft and deformable structures endows soft robotic systems with the compliance and resiliency that makes them well adapted for unstructured and dynamic environments. Although actuation mechanisms for soft robots vary widely, soft electrostatic transducers such as dielectric elastomer actuators (DEAs) and hydraulically amplified self-healing electrostatic (HASEL) actuators have demonstrated promise due to their muscle-like performance and capacitive self-sensing capabilities. Despite previous efforts to implement self-sensing in electrostatic transducers by overlaying sinusoidal low-voltage signals, these designs still require sensing high-voltage signals, requiring bulky components that prevent integration with miniature untethered soft robots. We present a circuit design that eliminates the need for any high-voltage sensing components, thereby facilitating the design of simple low cost circuits using off-the-shelf components. Using this circuit, we perform simultaneous sensing and actuation for a range of electrostatic transducers including circular DEAs and HASEL actuators and demonstrate accurate estimated displacements with errors &lt;4%. We further develop this circuit into a compact and portable system that couples high voltage actuation, sensing, and computation as a prototype toward untethered multifunctional soft robotic systems. Finally, we demonstrate the capabilities of our self-sensing design through feedback control of a robotic arm powered by Peano-HASEL actuators.</description><subject>Muscles</subject><subject>Musculoskeletal System</subject><subject>Original Articles</subject><subject>Robotics</subject><subject>Static Electricity</subject><subject>Transducers</subject><issn>2169-5172</issn><issn>2169-5180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1r3DAQhkVpScI21xyLjr14O_qwVz4Wk6aFDTlscjaSPC4qWmkryYX010dm01wrGCSGZ15GDyE3DLYMVP8lxxS3HDhsAaR6R6446_qmZQrev713_JJc5_wL6ul30DG4IJdCALCd5FfE37vgdFmS-4sTHVyyiyvpmc4x0UGftHXF_UF6QD83BwzZhZ9Uh0r6mHFq9jGe6BBDSdHTONNDnAu99WhrIxddnKWPSYc8LRZT_kg-zNpnvH69N-Tp2-3j8L3ZP9z9GL7uGysklEaDNFPX9rwTnYGWac5b03dGtAyEmUAzw5Xc2foXyY2aulpKoBCtYjgZJTbk8zn3lOLvBXMZjy5b9F4HjEseuZRKMuA1bkO2Z9TWhXPCeTwld9TpeWQwrpLHVfK4Sh5XyXXg02v2Yo44veH_lFZAnoG1rUPwDg2m8r_cFyueigE</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ly, Khoi</creator><creator>Kellaris, Nicholas</creator><creator>McMorris, Dade</creator><creator>Johnson, Brian K</creator><creator>Acome, Eric</creator><creator>Sundaram, Vani</creator><creator>Naris, Mantas</creator><creator>Humbert, J Sean</creator><creator>Rentschler, Mark E</creator><creator>Keplinger, Christoph</creator><creator>Correll, Nikolaus</creator><general>Mary Ann Liebert, Inc., publishers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20211201</creationdate><title>Miniaturized Circuitry for Capacitive Self-Sensing and Closed-Loop Control of Soft Electrostatic Transducers</title><author>Ly, Khoi ; Kellaris, Nicholas ; McMorris, Dade ; Johnson, Brian K ; Acome, Eric ; Sundaram, Vani ; Naris, Mantas ; Humbert, J Sean ; Rentschler, Mark E ; Keplinger, Christoph ; Correll, Nikolaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-a04bd6592636b051a225b96b35103bd0a1b2847c61042b8d6b8d83e33581edb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Muscles</topic><topic>Musculoskeletal System</topic><topic>Original Articles</topic><topic>Robotics</topic><topic>Static Electricity</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ly, Khoi</creatorcontrib><creatorcontrib>Kellaris, Nicholas</creatorcontrib><creatorcontrib>McMorris, Dade</creatorcontrib><creatorcontrib>Johnson, Brian K</creatorcontrib><creatorcontrib>Acome, Eric</creatorcontrib><creatorcontrib>Sundaram, Vani</creatorcontrib><creatorcontrib>Naris, Mantas</creatorcontrib><creatorcontrib>Humbert, J Sean</creatorcontrib><creatorcontrib>Rentschler, Mark E</creatorcontrib><creatorcontrib>Keplinger, Christoph</creatorcontrib><creatorcontrib>Correll, Nikolaus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Soft robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ly, Khoi</au><au>Kellaris, Nicholas</au><au>McMorris, Dade</au><au>Johnson, Brian K</au><au>Acome, Eric</au><au>Sundaram, Vani</au><au>Naris, Mantas</au><au>Humbert, J Sean</au><au>Rentschler, Mark E</au><au>Keplinger, Christoph</au><au>Correll, Nikolaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Miniaturized Circuitry for Capacitive Self-Sensing and Closed-Loop Control of Soft Electrostatic Transducers</atitle><jtitle>Soft robotics</jtitle><addtitle>Soft Robot</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>8</volume><issue>6</issue><spage>673</spage><epage>686</epage><pages>673-686</pages><issn>2169-5172</issn><eissn>2169-5180</eissn><abstract>Soft robotics is a field of robotic system design characterized by materials and structures that exhibit large-scale deformation, high compliance, and rich multifunctionality. The incorporation of soft and deformable structures endows soft robotic systems with the compliance and resiliency that makes them well adapted for unstructured and dynamic environments. Although actuation mechanisms for soft robots vary widely, soft electrostatic transducers such as dielectric elastomer actuators (DEAs) and hydraulically amplified self-healing electrostatic (HASEL) actuators have demonstrated promise due to their muscle-like performance and capacitive self-sensing capabilities. Despite previous efforts to implement self-sensing in electrostatic transducers by overlaying sinusoidal low-voltage signals, these designs still require sensing high-voltage signals, requiring bulky components that prevent integration with miniature untethered soft robots. We present a circuit design that eliminates the need for any high-voltage sensing components, thereby facilitating the design of simple low cost circuits using off-the-shelf components. Using this circuit, we perform simultaneous sensing and actuation for a range of electrostatic transducers including circular DEAs and HASEL actuators and demonstrate accurate estimated displacements with errors &lt;4%. We further develop this circuit into a compact and portable system that couples high voltage actuation, sensing, and computation as a prototype toward untethered multifunctional soft robotic systems. Finally, we demonstrate the capabilities of our self-sensing design through feedback control of a robotic arm powered by Peano-HASEL actuators.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc., publishers</pub><pmid>33001742</pmid><doi>10.1089/soro.2020.0048</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2169-5172
ispartof Soft robotics, 2021-12, Vol.8 (6), p.673-686
issn 2169-5172
2169-5180
language eng
recordid cdi_proquest_miscellaneous_2448410210
source MEDLINE; Alma/SFX Local Collection
subjects Muscles
Musculoskeletal System
Original Articles
Robotics
Static Electricity
Transducers
title Miniaturized Circuitry for Capacitive Self-Sensing and Closed-Loop Control of Soft Electrostatic Transducers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Miniaturized%20Circuitry%20for%20Capacitive%20Self-Sensing%20and%20Closed-Loop%20Control%20of%20Soft%20Electrostatic%20Transducers&rft.jtitle=Soft%20robotics&rft.au=Ly,%20Khoi&rft.date=2021-12-01&rft.volume=8&rft.issue=6&rft.spage=673&rft.epage=686&rft.pages=673-686&rft.issn=2169-5172&rft.eissn=2169-5180&rft_id=info:doi/10.1089/soro.2020.0048&rft_dat=%3Cproquest_cross%3E2448410210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448410210&rft_id=info:pmid/33001742&rfr_iscdi=true