Coptisine Blocks Secretion of Exosomal circCCT3 from Cancer-Associated Fibroblasts to Reprogram Glucose Metabolism in Hepatocellular Carcinoma
Coptisine, extracted from rhizoma coptidis, has been shown to inhibit a variety of cancers. However, the underlying mechanism by which coptisine regulates hepatocellular carcinoma (HCC) progression remains unknown. MTT assay, transwell invasion assay, and TUNEL assay were employed to examine cell vi...
Gespeichert in:
Veröffentlicht in: | DNA and cell biology 2020-12, Vol.39 (12), p.2281-2288 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2288 |
---|---|
container_issue | 12 |
container_start_page | 2281 |
container_title | DNA and cell biology |
container_volume | 39 |
creator | Lv, Baowei Zhu, Wenyan Feng, Chunqing |
description | Coptisine, extracted from rhizoma coptidis, has been shown to inhibit a variety of cancers. However, the underlying mechanism by which coptisine regulates hepatocellular carcinoma (HCC) progression remains unknown. MTT assay, transwell invasion assay, and TUNEL assay were employed to examine cell viability, invasion, and apoptosis.
tumor growth was determined by xenograft experiment. Reverse transcription-quantitative PCR was used to detect circCCT3 and HK2 gene expression. We utilized glucose consumption and lactate production assay to examine glucose metabolism state. Conditioned medium of coptisine-treated cancer-associated fibroblast (CAF) suppressed cell viability and invasion of HepG2 and Huh-7, whereas increased cell apoptosis. Coptisine significantly inhibited tumor growth of HepG2 cells in immunodeficient mice. Mechanistically, coptisine blocked secretion of exosomal circCCT3 from CAF. More notably, circCCT3 was upregulated in clinical HCC tumors. Moreover, circCCT3 was confirmed to affect glucose metabolism of HCC cells. We identified HK2 as a key downstream effector for circCCT3-modulated HCC tumorigenesis. In summary, our research revealed novel molecular mechanism of coptisine-blocked HCC progression, thereby providing solid rationale for using coptisine to treat HCC. |
doi_str_mv | 10.1089/dna.2020.6058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2448409914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448409914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-882ae0460ddf0e6343d3a9b7e5d218c9263e5a42a8981bc3f3b3659bc3d9be713</originalsourceid><addsrcrecordid>eNpdkctu1TAURS0EoqUwZIosMWGS2-NXYg9L1AdSK6S2jCPHOUEuTnyxHYn-BN-Mr1oYMDp7sLTPlhYh7xnsGGhzOq12x4HDrgWlX5BjplTXdFLAy5pBykZJo4_Im5wfAEBxBq_JkRAArIP2mPzu47747Fekn0N0PzK9Q5ew-LjSONPzXzHHxQbqfHJ9fy_onOJCe7s6TM1ZztF5W3CiF35McQw2l0xLpLe4T_F7sgu9DJuLGekNFjvG4PNC_UqvcG9LdBjCFmyqfcn5tT56S17NNmR893xPyLeL8_v-qrn-evmlP7tuHBdtabTmFkG2ME0zYCukmIQ1Y4dq4kw7w1uBykputdFsdGIWo2iVqWkyI3ZMnJBPT7115s8NcxkWnw9z7IpxywOXUkswhsmKfvwPfYhbWuu6SrWV0lJBpZonyqWYc8J52Ce_2PQ4MBgOooYqajiIGg6iKv_huXUbF5z-0X_NiD_j14-W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468408450</pqid></control><display><type>article</type><title>Coptisine Blocks Secretion of Exosomal circCCT3 from Cancer-Associated Fibroblasts to Reprogram Glucose Metabolism in Hepatocellular Carcinoma</title><source>Alma/SFX Local Collection</source><creator>Lv, Baowei ; Zhu, Wenyan ; Feng, Chunqing</creator><creatorcontrib>Lv, Baowei ; Zhu, Wenyan ; Feng, Chunqing</creatorcontrib><description>Coptisine, extracted from rhizoma coptidis, has been shown to inhibit a variety of cancers. However, the underlying mechanism by which coptisine regulates hepatocellular carcinoma (HCC) progression remains unknown. MTT assay, transwell invasion assay, and TUNEL assay were employed to examine cell viability, invasion, and apoptosis.
tumor growth was determined by xenograft experiment. Reverse transcription-quantitative PCR was used to detect circCCT3 and HK2 gene expression. We utilized glucose consumption and lactate production assay to examine glucose metabolism state. Conditioned medium of coptisine-treated cancer-associated fibroblast (CAF) suppressed cell viability and invasion of HepG2 and Huh-7, whereas increased cell apoptosis. Coptisine significantly inhibited tumor growth of HepG2 cells in immunodeficient mice. Mechanistically, coptisine blocked secretion of exosomal circCCT3 from CAF. More notably, circCCT3 was upregulated in clinical HCC tumors. Moreover, circCCT3 was confirmed to affect glucose metabolism of HCC cells. We identified HK2 as a key downstream effector for circCCT3-modulated HCC tumorigenesis. In summary, our research revealed novel molecular mechanism of coptisine-blocked HCC progression, thereby providing solid rationale for using coptisine to treat HCC.</description><identifier>ISSN: 1044-5498</identifier><identifier>EISSN: 1557-7430</identifier><identifier>DOI: 10.1089/dna.2020.6058</identifier><identifier>PMID: 33001706</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Apoptosis ; Assaying ; Cancer ; Cell viability ; Fibroblasts ; Gene expression ; Glucose ; Glucose metabolism ; Hepatocellular carcinoma ; Immunodeficiency ; In vivo methods and tests ; Lactic acid ; Liver cancer ; Metabolism ; Reverse transcription ; Tumorigenesis ; Tumors ; Xenografts ; Xenotransplantation</subject><ispartof>DNA and cell biology, 2020-12, Vol.39 (12), p.2281-2288</ispartof><rights>Copyright Mary Ann Liebert, Inc. Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c236t-882ae0460ddf0e6343d3a9b7e5d218c9263e5a42a8981bc3f3b3659bc3d9be713</citedby><cites>FETCH-LOGICAL-c236t-882ae0460ddf0e6343d3a9b7e5d218c9263e5a42a8981bc3f3b3659bc3d9be713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33001706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Baowei</creatorcontrib><creatorcontrib>Zhu, Wenyan</creatorcontrib><creatorcontrib>Feng, Chunqing</creatorcontrib><title>Coptisine Blocks Secretion of Exosomal circCCT3 from Cancer-Associated Fibroblasts to Reprogram Glucose Metabolism in Hepatocellular Carcinoma</title><title>DNA and cell biology</title><addtitle>DNA Cell Biol</addtitle><description>Coptisine, extracted from rhizoma coptidis, has been shown to inhibit a variety of cancers. However, the underlying mechanism by which coptisine regulates hepatocellular carcinoma (HCC) progression remains unknown. MTT assay, transwell invasion assay, and TUNEL assay were employed to examine cell viability, invasion, and apoptosis.
tumor growth was determined by xenograft experiment. Reverse transcription-quantitative PCR was used to detect circCCT3 and HK2 gene expression. We utilized glucose consumption and lactate production assay to examine glucose metabolism state. Conditioned medium of coptisine-treated cancer-associated fibroblast (CAF) suppressed cell viability and invasion of HepG2 and Huh-7, whereas increased cell apoptosis. Coptisine significantly inhibited tumor growth of HepG2 cells in immunodeficient mice. Mechanistically, coptisine blocked secretion of exosomal circCCT3 from CAF. More notably, circCCT3 was upregulated in clinical HCC tumors. Moreover, circCCT3 was confirmed to affect glucose metabolism of HCC cells. We identified HK2 as a key downstream effector for circCCT3-modulated HCC tumorigenesis. In summary, our research revealed novel molecular mechanism of coptisine-blocked HCC progression, thereby providing solid rationale for using coptisine to treat HCC.</description><subject>Apoptosis</subject><subject>Assaying</subject><subject>Cancer</subject><subject>Cell viability</subject><subject>Fibroblasts</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Hepatocellular carcinoma</subject><subject>Immunodeficiency</subject><subject>In vivo methods and tests</subject><subject>Lactic acid</subject><subject>Liver cancer</subject><subject>Metabolism</subject><subject>Reverse transcription</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><issn>1044-5498</issn><issn>1557-7430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkctu1TAURS0EoqUwZIosMWGS2-NXYg9L1AdSK6S2jCPHOUEuTnyxHYn-BN-Mr1oYMDp7sLTPlhYh7xnsGGhzOq12x4HDrgWlX5BjplTXdFLAy5pBykZJo4_Im5wfAEBxBq_JkRAArIP2mPzu47747Fekn0N0PzK9Q5ew-LjSONPzXzHHxQbqfHJ9fy_onOJCe7s6TM1ZztF5W3CiF35McQw2l0xLpLe4T_F7sgu9DJuLGekNFjvG4PNC_UqvcG9LdBjCFmyqfcn5tT56S17NNmR893xPyLeL8_v-qrn-evmlP7tuHBdtabTmFkG2ME0zYCukmIQ1Y4dq4kw7w1uBykputdFsdGIWo2iVqWkyI3ZMnJBPT7115s8NcxkWnw9z7IpxywOXUkswhsmKfvwPfYhbWuu6SrWV0lJBpZonyqWYc8J52Ce_2PQ4MBgOooYqajiIGg6iKv_huXUbF5z-0X_NiD_j14-W</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Lv, Baowei</creator><creator>Zhu, Wenyan</creator><creator>Feng, Chunqing</creator><general>Mary Ann Liebert, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20201201</creationdate><title>Coptisine Blocks Secretion of Exosomal circCCT3 from Cancer-Associated Fibroblasts to Reprogram Glucose Metabolism in Hepatocellular Carcinoma</title><author>Lv, Baowei ; Zhu, Wenyan ; Feng, Chunqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-882ae0460ddf0e6343d3a9b7e5d218c9263e5a42a8981bc3f3b3659bc3d9be713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apoptosis</topic><topic>Assaying</topic><topic>Cancer</topic><topic>Cell viability</topic><topic>Fibroblasts</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Hepatocellular carcinoma</topic><topic>Immunodeficiency</topic><topic>In vivo methods and tests</topic><topic>Lactic acid</topic><topic>Liver cancer</topic><topic>Metabolism</topic><topic>Reverse transcription</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Baowei</creatorcontrib><creatorcontrib>Zhu, Wenyan</creatorcontrib><creatorcontrib>Feng, Chunqing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>DNA and cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Baowei</au><au>Zhu, Wenyan</au><au>Feng, Chunqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coptisine Blocks Secretion of Exosomal circCCT3 from Cancer-Associated Fibroblasts to Reprogram Glucose Metabolism in Hepatocellular Carcinoma</atitle><jtitle>DNA and cell biology</jtitle><addtitle>DNA Cell Biol</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>39</volume><issue>12</issue><spage>2281</spage><epage>2288</epage><pages>2281-2288</pages><issn>1044-5498</issn><eissn>1557-7430</eissn><abstract>Coptisine, extracted from rhizoma coptidis, has been shown to inhibit a variety of cancers. However, the underlying mechanism by which coptisine regulates hepatocellular carcinoma (HCC) progression remains unknown. MTT assay, transwell invasion assay, and TUNEL assay were employed to examine cell viability, invasion, and apoptosis.
tumor growth was determined by xenograft experiment. Reverse transcription-quantitative PCR was used to detect circCCT3 and HK2 gene expression. We utilized glucose consumption and lactate production assay to examine glucose metabolism state. Conditioned medium of coptisine-treated cancer-associated fibroblast (CAF) suppressed cell viability and invasion of HepG2 and Huh-7, whereas increased cell apoptosis. Coptisine significantly inhibited tumor growth of HepG2 cells in immunodeficient mice. Mechanistically, coptisine blocked secretion of exosomal circCCT3 from CAF. More notably, circCCT3 was upregulated in clinical HCC tumors. Moreover, circCCT3 was confirmed to affect glucose metabolism of HCC cells. We identified HK2 as a key downstream effector for circCCT3-modulated HCC tumorigenesis. In summary, our research revealed novel molecular mechanism of coptisine-blocked HCC progression, thereby providing solid rationale for using coptisine to treat HCC.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>33001706</pmid><doi>10.1089/dna.2020.6058</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-5498 |
ispartof | DNA and cell biology, 2020-12, Vol.39 (12), p.2281-2288 |
issn | 1044-5498 1557-7430 |
language | eng |
recordid | cdi_proquest_miscellaneous_2448409914 |
source | Alma/SFX Local Collection |
subjects | Apoptosis Assaying Cancer Cell viability Fibroblasts Gene expression Glucose Glucose metabolism Hepatocellular carcinoma Immunodeficiency In vivo methods and tests Lactic acid Liver cancer Metabolism Reverse transcription Tumorigenesis Tumors Xenografts Xenotransplantation |
title | Coptisine Blocks Secretion of Exosomal circCCT3 from Cancer-Associated Fibroblasts to Reprogram Glucose Metabolism in Hepatocellular Carcinoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coptisine%20Blocks%20Secretion%20of%20Exosomal%20circCCT3%20from%20Cancer-Associated%20Fibroblasts%20to%20Reprogram%20Glucose%20Metabolism%20in%20Hepatocellular%20Carcinoma&rft.jtitle=DNA%20and%20cell%20biology&rft.au=Lv,%20Baowei&rft.date=2020-12-01&rft.volume=39&rft.issue=12&rft.spage=2281&rft.epage=2288&rft.pages=2281-2288&rft.issn=1044-5498&rft.eissn=1557-7430&rft_id=info:doi/10.1089/dna.2020.6058&rft_dat=%3Cproquest_cross%3E2448409914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468408450&rft_id=info:pmid/33001706&rfr_iscdi=true |