Coptisine Blocks Secretion of Exosomal circCCT3 from Cancer-Associated Fibroblasts to Reprogram Glucose Metabolism in Hepatocellular Carcinoma

Coptisine, extracted from rhizoma coptidis, has been shown to inhibit a variety of cancers. However, the underlying mechanism by which coptisine regulates hepatocellular carcinoma (HCC) progression remains unknown. MTT assay, transwell invasion assay, and TUNEL assay were employed to examine cell vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:DNA and cell biology 2020-12, Vol.39 (12), p.2281-2288
Hauptverfasser: Lv, Baowei, Zhu, Wenyan, Feng, Chunqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2288
container_issue 12
container_start_page 2281
container_title DNA and cell biology
container_volume 39
creator Lv, Baowei
Zhu, Wenyan
Feng, Chunqing
description Coptisine, extracted from rhizoma coptidis, has been shown to inhibit a variety of cancers. However, the underlying mechanism by which coptisine regulates hepatocellular carcinoma (HCC) progression remains unknown. MTT assay, transwell invasion assay, and TUNEL assay were employed to examine cell viability, invasion, and apoptosis. tumor growth was determined by xenograft experiment. Reverse transcription-quantitative PCR was used to detect circCCT3 and HK2 gene expression. We utilized glucose consumption and lactate production assay to examine glucose metabolism state. Conditioned medium of coptisine-treated cancer-associated fibroblast (CAF) suppressed cell viability and invasion of HepG2 and Huh-7, whereas increased cell apoptosis. Coptisine significantly inhibited tumor growth of HepG2 cells in immunodeficient mice. Mechanistically, coptisine blocked secretion of exosomal circCCT3 from CAF. More notably, circCCT3 was upregulated in clinical HCC tumors. Moreover, circCCT3 was confirmed to affect glucose metabolism of HCC cells. We identified HK2 as a key downstream effector for circCCT3-modulated HCC tumorigenesis. In summary, our research revealed novel molecular mechanism of coptisine-blocked HCC progression, thereby providing solid rationale for using coptisine to treat HCC.
doi_str_mv 10.1089/dna.2020.6058
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2448409914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448409914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-882ae0460ddf0e6343d3a9b7e5d218c9263e5a42a8981bc3f3b3659bc3d9be713</originalsourceid><addsrcrecordid>eNpdkctu1TAURS0EoqUwZIosMWGS2-NXYg9L1AdSK6S2jCPHOUEuTnyxHYn-BN-Mr1oYMDp7sLTPlhYh7xnsGGhzOq12x4HDrgWlX5BjplTXdFLAy5pBykZJo4_Im5wfAEBxBq_JkRAArIP2mPzu47747Fekn0N0PzK9Q5ew-LjSONPzXzHHxQbqfHJ9fy_onOJCe7s6TM1ZztF5W3CiF35McQw2l0xLpLe4T_F7sgu9DJuLGekNFjvG4PNC_UqvcG9LdBjCFmyqfcn5tT56S17NNmR893xPyLeL8_v-qrn-evmlP7tuHBdtabTmFkG2ME0zYCukmIQ1Y4dq4kw7w1uBykputdFsdGIWo2iVqWkyI3ZMnJBPT7115s8NcxkWnw9z7IpxywOXUkswhsmKfvwPfYhbWuu6SrWV0lJBpZonyqWYc8J52Ce_2PQ4MBgOooYqajiIGg6iKv_huXUbF5z-0X_NiD_j14-W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468408450</pqid></control><display><type>article</type><title>Coptisine Blocks Secretion of Exosomal circCCT3 from Cancer-Associated Fibroblasts to Reprogram Glucose Metabolism in Hepatocellular Carcinoma</title><source>Alma/SFX Local Collection</source><creator>Lv, Baowei ; Zhu, Wenyan ; Feng, Chunqing</creator><creatorcontrib>Lv, Baowei ; Zhu, Wenyan ; Feng, Chunqing</creatorcontrib><description>Coptisine, extracted from rhizoma coptidis, has been shown to inhibit a variety of cancers. However, the underlying mechanism by which coptisine regulates hepatocellular carcinoma (HCC) progression remains unknown. MTT assay, transwell invasion assay, and TUNEL assay were employed to examine cell viability, invasion, and apoptosis. tumor growth was determined by xenograft experiment. Reverse transcription-quantitative PCR was used to detect circCCT3 and HK2 gene expression. We utilized glucose consumption and lactate production assay to examine glucose metabolism state. Conditioned medium of coptisine-treated cancer-associated fibroblast (CAF) suppressed cell viability and invasion of HepG2 and Huh-7, whereas increased cell apoptosis. Coptisine significantly inhibited tumor growth of HepG2 cells in immunodeficient mice. Mechanistically, coptisine blocked secretion of exosomal circCCT3 from CAF. More notably, circCCT3 was upregulated in clinical HCC tumors. Moreover, circCCT3 was confirmed to affect glucose metabolism of HCC cells. We identified HK2 as a key downstream effector for circCCT3-modulated HCC tumorigenesis. In summary, our research revealed novel molecular mechanism of coptisine-blocked HCC progression, thereby providing solid rationale for using coptisine to treat HCC.</description><identifier>ISSN: 1044-5498</identifier><identifier>EISSN: 1557-7430</identifier><identifier>DOI: 10.1089/dna.2020.6058</identifier><identifier>PMID: 33001706</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Apoptosis ; Assaying ; Cancer ; Cell viability ; Fibroblasts ; Gene expression ; Glucose ; Glucose metabolism ; Hepatocellular carcinoma ; Immunodeficiency ; In vivo methods and tests ; Lactic acid ; Liver cancer ; Metabolism ; Reverse transcription ; Tumorigenesis ; Tumors ; Xenografts ; Xenotransplantation</subject><ispartof>DNA and cell biology, 2020-12, Vol.39 (12), p.2281-2288</ispartof><rights>Copyright Mary Ann Liebert, Inc. Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c236t-882ae0460ddf0e6343d3a9b7e5d218c9263e5a42a8981bc3f3b3659bc3d9be713</citedby><cites>FETCH-LOGICAL-c236t-882ae0460ddf0e6343d3a9b7e5d218c9263e5a42a8981bc3f3b3659bc3d9be713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33001706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Baowei</creatorcontrib><creatorcontrib>Zhu, Wenyan</creatorcontrib><creatorcontrib>Feng, Chunqing</creatorcontrib><title>Coptisine Blocks Secretion of Exosomal circCCT3 from Cancer-Associated Fibroblasts to Reprogram Glucose Metabolism in Hepatocellular Carcinoma</title><title>DNA and cell biology</title><addtitle>DNA Cell Biol</addtitle><description>Coptisine, extracted from rhizoma coptidis, has been shown to inhibit a variety of cancers. However, the underlying mechanism by which coptisine regulates hepatocellular carcinoma (HCC) progression remains unknown. MTT assay, transwell invasion assay, and TUNEL assay were employed to examine cell viability, invasion, and apoptosis. tumor growth was determined by xenograft experiment. Reverse transcription-quantitative PCR was used to detect circCCT3 and HK2 gene expression. We utilized glucose consumption and lactate production assay to examine glucose metabolism state. Conditioned medium of coptisine-treated cancer-associated fibroblast (CAF) suppressed cell viability and invasion of HepG2 and Huh-7, whereas increased cell apoptosis. Coptisine significantly inhibited tumor growth of HepG2 cells in immunodeficient mice. Mechanistically, coptisine blocked secretion of exosomal circCCT3 from CAF. More notably, circCCT3 was upregulated in clinical HCC tumors. Moreover, circCCT3 was confirmed to affect glucose metabolism of HCC cells. We identified HK2 as a key downstream effector for circCCT3-modulated HCC tumorigenesis. In summary, our research revealed novel molecular mechanism of coptisine-blocked HCC progression, thereby providing solid rationale for using coptisine to treat HCC.</description><subject>Apoptosis</subject><subject>Assaying</subject><subject>Cancer</subject><subject>Cell viability</subject><subject>Fibroblasts</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Hepatocellular carcinoma</subject><subject>Immunodeficiency</subject><subject>In vivo methods and tests</subject><subject>Lactic acid</subject><subject>Liver cancer</subject><subject>Metabolism</subject><subject>Reverse transcription</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><issn>1044-5498</issn><issn>1557-7430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkctu1TAURS0EoqUwZIosMWGS2-NXYg9L1AdSK6S2jCPHOUEuTnyxHYn-BN-Mr1oYMDp7sLTPlhYh7xnsGGhzOq12x4HDrgWlX5BjplTXdFLAy5pBykZJo4_Im5wfAEBxBq_JkRAArIP2mPzu47747Fekn0N0PzK9Q5ew-LjSONPzXzHHxQbqfHJ9fy_onOJCe7s6TM1ZztF5W3CiF35McQw2l0xLpLe4T_F7sgu9DJuLGekNFjvG4PNC_UqvcG9LdBjCFmyqfcn5tT56S17NNmR893xPyLeL8_v-qrn-evmlP7tuHBdtabTmFkG2ME0zYCukmIQ1Y4dq4kw7w1uBykputdFsdGIWo2iVqWkyI3ZMnJBPT7115s8NcxkWnw9z7IpxywOXUkswhsmKfvwPfYhbWuu6SrWV0lJBpZonyqWYc8J52Ce_2PQ4MBgOooYqajiIGg6iKv_huXUbF5z-0X_NiD_j14-W</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Lv, Baowei</creator><creator>Zhu, Wenyan</creator><creator>Feng, Chunqing</creator><general>Mary Ann Liebert, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20201201</creationdate><title>Coptisine Blocks Secretion of Exosomal circCCT3 from Cancer-Associated Fibroblasts to Reprogram Glucose Metabolism in Hepatocellular Carcinoma</title><author>Lv, Baowei ; Zhu, Wenyan ; Feng, Chunqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-882ae0460ddf0e6343d3a9b7e5d218c9263e5a42a8981bc3f3b3659bc3d9be713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apoptosis</topic><topic>Assaying</topic><topic>Cancer</topic><topic>Cell viability</topic><topic>Fibroblasts</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Hepatocellular carcinoma</topic><topic>Immunodeficiency</topic><topic>In vivo methods and tests</topic><topic>Lactic acid</topic><topic>Liver cancer</topic><topic>Metabolism</topic><topic>Reverse transcription</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Baowei</creatorcontrib><creatorcontrib>Zhu, Wenyan</creatorcontrib><creatorcontrib>Feng, Chunqing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>DNA and cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Baowei</au><au>Zhu, Wenyan</au><au>Feng, Chunqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coptisine Blocks Secretion of Exosomal circCCT3 from Cancer-Associated Fibroblasts to Reprogram Glucose Metabolism in Hepatocellular Carcinoma</atitle><jtitle>DNA and cell biology</jtitle><addtitle>DNA Cell Biol</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>39</volume><issue>12</issue><spage>2281</spage><epage>2288</epage><pages>2281-2288</pages><issn>1044-5498</issn><eissn>1557-7430</eissn><abstract>Coptisine, extracted from rhizoma coptidis, has been shown to inhibit a variety of cancers. However, the underlying mechanism by which coptisine regulates hepatocellular carcinoma (HCC) progression remains unknown. MTT assay, transwell invasion assay, and TUNEL assay were employed to examine cell viability, invasion, and apoptosis. tumor growth was determined by xenograft experiment. Reverse transcription-quantitative PCR was used to detect circCCT3 and HK2 gene expression. We utilized glucose consumption and lactate production assay to examine glucose metabolism state. Conditioned medium of coptisine-treated cancer-associated fibroblast (CAF) suppressed cell viability and invasion of HepG2 and Huh-7, whereas increased cell apoptosis. Coptisine significantly inhibited tumor growth of HepG2 cells in immunodeficient mice. Mechanistically, coptisine blocked secretion of exosomal circCCT3 from CAF. More notably, circCCT3 was upregulated in clinical HCC tumors. Moreover, circCCT3 was confirmed to affect glucose metabolism of HCC cells. We identified HK2 as a key downstream effector for circCCT3-modulated HCC tumorigenesis. In summary, our research revealed novel molecular mechanism of coptisine-blocked HCC progression, thereby providing solid rationale for using coptisine to treat HCC.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>33001706</pmid><doi>10.1089/dna.2020.6058</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1044-5498
ispartof DNA and cell biology, 2020-12, Vol.39 (12), p.2281-2288
issn 1044-5498
1557-7430
language eng
recordid cdi_proquest_miscellaneous_2448409914
source Alma/SFX Local Collection
subjects Apoptosis
Assaying
Cancer
Cell viability
Fibroblasts
Gene expression
Glucose
Glucose metabolism
Hepatocellular carcinoma
Immunodeficiency
In vivo methods and tests
Lactic acid
Liver cancer
Metabolism
Reverse transcription
Tumorigenesis
Tumors
Xenografts
Xenotransplantation
title Coptisine Blocks Secretion of Exosomal circCCT3 from Cancer-Associated Fibroblasts to Reprogram Glucose Metabolism in Hepatocellular Carcinoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coptisine%20Blocks%20Secretion%20of%20Exosomal%20circCCT3%20from%20Cancer-Associated%20Fibroblasts%20to%20Reprogram%20Glucose%20Metabolism%20in%20Hepatocellular%20Carcinoma&rft.jtitle=DNA%20and%20cell%20biology&rft.au=Lv,%20Baowei&rft.date=2020-12-01&rft.volume=39&rft.issue=12&rft.spage=2281&rft.epage=2288&rft.pages=2281-2288&rft.issn=1044-5498&rft.eissn=1557-7430&rft_id=info:doi/10.1089/dna.2020.6058&rft_dat=%3Cproquest_cross%3E2448409914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468408450&rft_id=info:pmid/33001706&rfr_iscdi=true