A Time‐Resolved Cryo‐EM Study of Saccharomyces cerevisiae 80S Ribosome Protein Composition in Response to a Change in Carbon Source

The role of the ribosome in the regulation of gene expression has come into increased focus. It is proposed that ribosomes are catalytic engines capable of changing their protein composition in response to environmental stimuli. Time‐resolved cryo‐electron microscopy (cryo‐EM) techniques are employe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteomics (Weinheim) 2021-01, Vol.21 (2), p.e2000125-n/a
Hauptverfasser: Sun, Ming, Shen, Bingxin, Li, Wen, Samir, Parimal, Browne, Christopher M., Link, Andrew J., Frank, Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e2000125
container_title Proteomics (Weinheim)
container_volume 21
creator Sun, Ming
Shen, Bingxin
Li, Wen
Samir, Parimal
Browne, Christopher M.
Link, Andrew J.
Frank, Joachim
description The role of the ribosome in the regulation of gene expression has come into increased focus. It is proposed that ribosomes are catalytic engines capable of changing their protein composition in response to environmental stimuli. Time‐resolved cryo‐electron microscopy (cryo‐EM) techniques are employed to identify quantitative changes in the protein composition and structure of the Saccharomyces cerevisiae 80S ribosomes after shifting the carbon source from glucose to glycerol. Using cryo‐EM combined with the computational classification approach, it is found that a fraction of the yeast cells’ 80S ribosomes lack ribosomal proteins at the entrance and exit sites for tRNAs, including uL16(RPL10), eS1(RPS1), uS11(RPS14A/B), and eS26(RPS26A/B). This fraction increased after a change from glucose to glycerol medium. The quantitative structural analysis supports the hypothesis that ribosomes are dynamic complexes that alter their composition in response to changes in growth or environmental conditions.
doi_str_mv 10.1002/pmic.202000125
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2448405400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448405400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3691-bed0e2100dda415be1d4071124e66c7d6273f55cfcc7b90550e69cc5e3b6191b3</originalsourceid><addsrcrecordid>eNqFkTtP3EAUhUdRokBIWko0Upo0u7nz9LpE1gaQQEEsqa3x-BoG2R4zYxO5S0fLb8wvyayWbJEm1X3ou0fn6hByzGDJAPjXoXN2yYEDAOPqDTlkmqlFvtLs7b5X4oB8iPEhIdkqz96TAyEAMibVIXk-pbeuw9-_Xm4w-vYJa1qE2ad5fUU341TP1Dd0Y6y9N8F3s8VILQZ8ctEZpCvY0BtX-eg7pNfBj-h6Wvhu8NGNzvc0jUl48H1EOnpqaHFv-jvc7gsTqkRs_BQsfiTvGtNG_PRaj8iPb-vb4nxx-f3soji9XFihc7aosAbk6fO6NpKpClkt0yeMS9TaZrXmmWiUso21WZWDUoA6t1ahqDTLWSWOyJed7hD844RxLDsXLbat6dFPseRSriQoCZDQz_-gD8lqn9wlKtMMJIcsUcsdZYOPMWBTDsF1Jswlg3IbUbmNqNxHlA5OXmWnqsN6j__NJAFqB_x0Lc7_kSuvry4KJoRi4g-0ip4H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476104207</pqid></control><display><type>article</type><title>A Time‐Resolved Cryo‐EM Study of Saccharomyces cerevisiae 80S Ribosome Protein Composition in Response to a Change in Carbon Source</title><source>Access via Wiley Online Library</source><creator>Sun, Ming ; Shen, Bingxin ; Li, Wen ; Samir, Parimal ; Browne, Christopher M. ; Link, Andrew J. ; Frank, Joachim</creator><creatorcontrib>Sun, Ming ; Shen, Bingxin ; Li, Wen ; Samir, Parimal ; Browne, Christopher M. ; Link, Andrew J. ; Frank, Joachim</creatorcontrib><description>The role of the ribosome in the regulation of gene expression has come into increased focus. It is proposed that ribosomes are catalytic engines capable of changing their protein composition in response to environmental stimuli. Time‐resolved cryo‐electron microscopy (cryo‐EM) techniques are employed to identify quantitative changes in the protein composition and structure of the Saccharomyces cerevisiae 80S ribosomes after shifting the carbon source from glucose to glycerol. Using cryo‐EM combined with the computational classification approach, it is found that a fraction of the yeast cells’ 80S ribosomes lack ribosomal proteins at the entrance and exit sites for tRNAs, including uL16(RPL10), eS1(RPS1), uS11(RPS14A/B), and eS26(RPS26A/B). This fraction increased after a change from glucose to glycerol medium. The quantitative structural analysis supports the hypothesis that ribosomes are dynamic complexes that alter their composition in response to changes in growth or environmental conditions.</description><identifier>ISSN: 1615-9853</identifier><identifier>EISSN: 1615-9861</identifier><identifier>DOI: 10.1002/pmic.202000125</identifier><identifier>PMID: 33007145</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon sources ; Composition ; Computer applications ; cryo‐electron microscopy ; Electron microscopy ; Entrances ; Environmental conditions ; Environmental effects ; eS1 (RPS1) ; Gene expression ; Glucose ; Glycerol ; image classification ; nutrient stress ; Protein composition ; Protein structure ; Proteins ; Ribosomal proteins ; ribosome ; Ribosomes ; Saccharomyces cerevisiae ; Structural analysis ; Supports ; time‐resolved methods ; uL16 (RPL10) ; Yeast ; Yeasts</subject><ispartof>Proteomics (Weinheim), 2021-01, Vol.21 (2), p.e2000125-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3691-bed0e2100dda415be1d4071124e66c7d6273f55cfcc7b90550e69cc5e3b6191b3</citedby><cites>FETCH-LOGICAL-c3691-bed0e2100dda415be1d4071124e66c7d6273f55cfcc7b90550e69cc5e3b6191b3</cites><orcidid>0000-0003-0885-5786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpmic.202000125$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpmic.202000125$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33007145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Ming</creatorcontrib><creatorcontrib>Shen, Bingxin</creatorcontrib><creatorcontrib>Li, Wen</creatorcontrib><creatorcontrib>Samir, Parimal</creatorcontrib><creatorcontrib>Browne, Christopher M.</creatorcontrib><creatorcontrib>Link, Andrew J.</creatorcontrib><creatorcontrib>Frank, Joachim</creatorcontrib><title>A Time‐Resolved Cryo‐EM Study of Saccharomyces cerevisiae 80S Ribosome Protein Composition in Response to a Change in Carbon Source</title><title>Proteomics (Weinheim)</title><addtitle>Proteomics</addtitle><description>The role of the ribosome in the regulation of gene expression has come into increased focus. It is proposed that ribosomes are catalytic engines capable of changing their protein composition in response to environmental stimuli. Time‐resolved cryo‐electron microscopy (cryo‐EM) techniques are employed to identify quantitative changes in the protein composition and structure of the Saccharomyces cerevisiae 80S ribosomes after shifting the carbon source from glucose to glycerol. Using cryo‐EM combined with the computational classification approach, it is found that a fraction of the yeast cells’ 80S ribosomes lack ribosomal proteins at the entrance and exit sites for tRNAs, including uL16(RPL10), eS1(RPS1), uS11(RPS14A/B), and eS26(RPS26A/B). This fraction increased after a change from glucose to glycerol medium. The quantitative structural analysis supports the hypothesis that ribosomes are dynamic complexes that alter their composition in response to changes in growth or environmental conditions.</description><subject>Carbon sources</subject><subject>Composition</subject><subject>Computer applications</subject><subject>cryo‐electron microscopy</subject><subject>Electron microscopy</subject><subject>Entrances</subject><subject>Environmental conditions</subject><subject>Environmental effects</subject><subject>eS1 (RPS1)</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Glycerol</subject><subject>image classification</subject><subject>nutrient stress</subject><subject>Protein composition</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Ribosomal proteins</subject><subject>ribosome</subject><subject>Ribosomes</subject><subject>Saccharomyces cerevisiae</subject><subject>Structural analysis</subject><subject>Supports</subject><subject>time‐resolved methods</subject><subject>uL16 (RPL10)</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1615-9853</issn><issn>1615-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkTtP3EAUhUdRokBIWko0Upo0u7nz9LpE1gaQQEEsqa3x-BoG2R4zYxO5S0fLb8wvyayWbJEm1X3ou0fn6hByzGDJAPjXoXN2yYEDAOPqDTlkmqlFvtLs7b5X4oB8iPEhIdkqz96TAyEAMibVIXk-pbeuw9-_Xm4w-vYJa1qE2ad5fUU341TP1Dd0Y6y9N8F3s8VILQZ8ctEZpCvY0BtX-eg7pNfBj-h6Wvhu8NGNzvc0jUl48H1EOnpqaHFv-jvc7gsTqkRs_BQsfiTvGtNG_PRaj8iPb-vb4nxx-f3soji9XFihc7aosAbk6fO6NpKpClkt0yeMS9TaZrXmmWiUso21WZWDUoA6t1ahqDTLWSWOyJed7hD844RxLDsXLbat6dFPseRSriQoCZDQz_-gD8lqn9wlKtMMJIcsUcsdZYOPMWBTDsF1Jswlg3IbUbmNqNxHlA5OXmWnqsN6j__NJAFqB_x0Lc7_kSuvry4KJoRi4g-0ip4H</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Sun, Ming</creator><creator>Shen, Bingxin</creator><creator>Li, Wen</creator><creator>Samir, Parimal</creator><creator>Browne, Christopher M.</creator><creator>Link, Andrew J.</creator><creator>Frank, Joachim</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0885-5786</orcidid></search><sort><creationdate>202101</creationdate><title>A Time‐Resolved Cryo‐EM Study of Saccharomyces cerevisiae 80S Ribosome Protein Composition in Response to a Change in Carbon Source</title><author>Sun, Ming ; Shen, Bingxin ; Li, Wen ; Samir, Parimal ; Browne, Christopher M. ; Link, Andrew J. ; Frank, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3691-bed0e2100dda415be1d4071124e66c7d6273f55cfcc7b90550e69cc5e3b6191b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon sources</topic><topic>Composition</topic><topic>Computer applications</topic><topic>cryo‐electron microscopy</topic><topic>Electron microscopy</topic><topic>Entrances</topic><topic>Environmental conditions</topic><topic>Environmental effects</topic><topic>eS1 (RPS1)</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Glycerol</topic><topic>image classification</topic><topic>nutrient stress</topic><topic>Protein composition</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Ribosomal proteins</topic><topic>ribosome</topic><topic>Ribosomes</topic><topic>Saccharomyces cerevisiae</topic><topic>Structural analysis</topic><topic>Supports</topic><topic>time‐resolved methods</topic><topic>uL16 (RPL10)</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Ming</creatorcontrib><creatorcontrib>Shen, Bingxin</creatorcontrib><creatorcontrib>Li, Wen</creatorcontrib><creatorcontrib>Samir, Parimal</creatorcontrib><creatorcontrib>Browne, Christopher M.</creatorcontrib><creatorcontrib>Link, Andrew J.</creatorcontrib><creatorcontrib>Frank, Joachim</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proteomics (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Ming</au><au>Shen, Bingxin</au><au>Li, Wen</au><au>Samir, Parimal</au><au>Browne, Christopher M.</au><au>Link, Andrew J.</au><au>Frank, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Time‐Resolved Cryo‐EM Study of Saccharomyces cerevisiae 80S Ribosome Protein Composition in Response to a Change in Carbon Source</atitle><jtitle>Proteomics (Weinheim)</jtitle><addtitle>Proteomics</addtitle><date>2021-01</date><risdate>2021</risdate><volume>21</volume><issue>2</issue><spage>e2000125</spage><epage>n/a</epage><pages>e2000125-n/a</pages><issn>1615-9853</issn><eissn>1615-9861</eissn><abstract>The role of the ribosome in the regulation of gene expression has come into increased focus. It is proposed that ribosomes are catalytic engines capable of changing their protein composition in response to environmental stimuli. Time‐resolved cryo‐electron microscopy (cryo‐EM) techniques are employed to identify quantitative changes in the protein composition and structure of the Saccharomyces cerevisiae 80S ribosomes after shifting the carbon source from glucose to glycerol. Using cryo‐EM combined with the computational classification approach, it is found that a fraction of the yeast cells’ 80S ribosomes lack ribosomal proteins at the entrance and exit sites for tRNAs, including uL16(RPL10), eS1(RPS1), uS11(RPS14A/B), and eS26(RPS26A/B). This fraction increased after a change from glucose to glycerol medium. The quantitative structural analysis supports the hypothesis that ribosomes are dynamic complexes that alter their composition in response to changes in growth or environmental conditions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33007145</pmid><doi>10.1002/pmic.202000125</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0885-5786</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1615-9853
ispartof Proteomics (Weinheim), 2021-01, Vol.21 (2), p.e2000125-n/a
issn 1615-9853
1615-9861
language eng
recordid cdi_proquest_miscellaneous_2448405400
source Access via Wiley Online Library
subjects Carbon sources
Composition
Computer applications
cryo‐electron microscopy
Electron microscopy
Entrances
Environmental conditions
Environmental effects
eS1 (RPS1)
Gene expression
Glucose
Glycerol
image classification
nutrient stress
Protein composition
Protein structure
Proteins
Ribosomal proteins
ribosome
Ribosomes
Saccharomyces cerevisiae
Structural analysis
Supports
time‐resolved methods
uL16 (RPL10)
Yeast
Yeasts
title A Time‐Resolved Cryo‐EM Study of Saccharomyces cerevisiae 80S Ribosome Protein Composition in Response to a Change in Carbon Source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Time%E2%80%90Resolved%20Cryo%E2%80%90EM%20Study%20of%20Saccharomyces%20cerevisiae%2080S%20Ribosome%20Protein%20Composition%20in%20Response%20to%20a%20Change%20in%20Carbon%20Source&rft.jtitle=Proteomics%20(Weinheim)&rft.au=Sun,%20Ming&rft.date=2021-01&rft.volume=21&rft.issue=2&rft.spage=e2000125&rft.epage=n/a&rft.pages=e2000125-n/a&rft.issn=1615-9853&rft.eissn=1615-9861&rft_id=info:doi/10.1002/pmic.202000125&rft_dat=%3Cproquest_cross%3E2448405400%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476104207&rft_id=info:pmid/33007145&rfr_iscdi=true