Activity and Stability Boosting of an Oxygen‐Vacancy‐Rich BiVO4 Photoanode by NiFe‐MOFs Thin Layer for Water Oxidation
The introduction of oxygen vacancies (Ov) has been regarded as an effective method to enhance the catalytic performance of photoanodes in oxygen evolution reaction (OER). However, their stability under highly oxidizing environment is questionable but was rarely studied. Herein, NiFe‐metal–organic fr...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2021-01, Vol.60 (3), p.1433-1440 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1440 |
---|---|
container_issue | 3 |
container_start_page | 1433 |
container_title | Angewandte Chemie International Edition |
container_volume | 60 |
creator | Pan, Jin‐Bo Wang, Bing‐Hao Wang, Jin‐Bo Ding, Hong‐Zhi Zhou, Wei Liu, Xuan Zhang, Jin‐Rong Shen, Sheng Guo, Jun‐Kang Chen, Lang Au, Chak‐Tong Jiang, Li‐Long Yin, Shuang‐Feng |
description | The introduction of oxygen vacancies (Ov) has been regarded as an effective method to enhance the catalytic performance of photoanodes in oxygen evolution reaction (OER). However, their stability under highly oxidizing environment is questionable but was rarely studied. Herein, NiFe‐metal–organic framework (NiFe‐MOFs) was conformally coated on oxygen‐vacancy‐rich BiVO4 (Ov‐BiVO4) as the protective layer and cocatalyst, forming a core–shell structure with caffeic acid as bridging agent. The as‐synthesized Ov‐BiVO4@NiFe‐MOFs exhibits enhanced stability and a remarkable photocurrent density of 5.3±0.15 mA cm−2 at 1.23 V (vs. RHE). The reduced coordination number of Ni(Fe)‐O and elevated valence state of Ni(Fe) in NiFe‐MOFs layer greatly bolster OER, and the shifting of oxygen evolution sites from Ov‐BiVO4 to NiFe‐MOFs promotes Ov stabilization. Ovs can be effectively preserved by the coating of a thin NiFe‐MOFs layer, leading to a photoanode of enhanced photocurrent and stability.
A core–shell Ov‐BiVO4@NiFe‐MOFs photoanode was constructed via a coordination‐assisted self‐assembly method. A NiFe‐MOFs thin layer acts as protective layer and cocatalyst to shift active sites from oxygen vacancies to NiFe‐MOFs, leading to improved stability and activity for OER. This molecular‐based approach tailors the coordination and electronic structure of active sites and provides mechanistic insights for rational design of photocatalysts. |
doi_str_mv | 10.1002/anie.202012550 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2448404019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448404019</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3690-2fbebe1e596bc26d52d592f23f61c48f940f5dae47828224fb3f276e6ac4ba903</originalsourceid><addsrcrecordid>eNpdkc9Kw0AYxIMoWKtXzwtevKTu_yTHtlgt1Ea01uOySXbblXS3Jqk24MFH8Bl9ErdUPHj6ZpgfwwcTBOcI9hCE-Epao3oYYogwY_Ag6CCGUUiiiBx6TQkJo5ih4-Ckrl88H8eQd4KPft6YN9O0QNoCPDYyM-XODZyrG2MXwGmfgHTbLpT9_vyay1zavPXqweRLMDDzlIL7pWuctK5QIGvB1IyUz-_SUQ1mS2PBRLaqAtpV4Fk2XqVbU8jGOHsaHGlZ1urs93aDp9H1bHgbTtKb8bA_CReEJzDEOlOZQoolPMsxLxguWII1JpqjnMY6oVCzQioaxTjGmOqMaBxxxWVOM5lA0g0u973ryr1uVN2IlalzVZbSKrepBaY0ppBClHj04h_64jaV9d95KuIxhzRinkr21LspVSvWlVnJqhUIit0SYreE-FtC9Kfj6z9HfgAeb4GP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476860475</pqid></control><display><type>article</type><title>Activity and Stability Boosting of an Oxygen‐Vacancy‐Rich BiVO4 Photoanode by NiFe‐MOFs Thin Layer for Water Oxidation</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Pan, Jin‐Bo ; Wang, Bing‐Hao ; Wang, Jin‐Bo ; Ding, Hong‐Zhi ; Zhou, Wei ; Liu, Xuan ; Zhang, Jin‐Rong ; Shen, Sheng ; Guo, Jun‐Kang ; Chen, Lang ; Au, Chak‐Tong ; Jiang, Li‐Long ; Yin, Shuang‐Feng</creator><creatorcontrib>Pan, Jin‐Bo ; Wang, Bing‐Hao ; Wang, Jin‐Bo ; Ding, Hong‐Zhi ; Zhou, Wei ; Liu, Xuan ; Zhang, Jin‐Rong ; Shen, Sheng ; Guo, Jun‐Kang ; Chen, Lang ; Au, Chak‐Tong ; Jiang, Li‐Long ; Yin, Shuang‐Feng</creatorcontrib><description>The introduction of oxygen vacancies (Ov) has been regarded as an effective method to enhance the catalytic performance of photoanodes in oxygen evolution reaction (OER). However, their stability under highly oxidizing environment is questionable but was rarely studied. Herein, NiFe‐metal–organic framework (NiFe‐MOFs) was conformally coated on oxygen‐vacancy‐rich BiVO4 (Ov‐BiVO4) as the protective layer and cocatalyst, forming a core–shell structure with caffeic acid as bridging agent. The as‐synthesized Ov‐BiVO4@NiFe‐MOFs exhibits enhanced stability and a remarkable photocurrent density of 5.3±0.15 mA cm−2 at 1.23 V (vs. RHE). The reduced coordination number of Ni(Fe)‐O and elevated valence state of Ni(Fe) in NiFe‐MOFs layer greatly bolster OER, and the shifting of oxygen evolution sites from Ov‐BiVO4 to NiFe‐MOFs promotes Ov stabilization. Ovs can be effectively preserved by the coating of a thin NiFe‐MOFs layer, leading to a photoanode of enhanced photocurrent and stability.
A core–shell Ov‐BiVO4@NiFe‐MOFs photoanode was constructed via a coordination‐assisted self‐assembly method. A NiFe‐MOFs thin layer acts as protective layer and cocatalyst to shift active sites from oxygen vacancies to NiFe‐MOFs, leading to improved stability and activity for OER. This molecular‐based approach tailors the coordination and electronic structure of active sites and provides mechanistic insights for rational design of photocatalysts.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202012550</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bismuth oxides ; BiVO4 photoanode ; Caffeic acid ; Coordination numbers ; Core-shell structure ; Intermetallic compounds ; Iron ; Iron compounds ; Metal-organic frameworks ; Nickel compounds ; NiFe-MOFs ; OER ; Oxidation ; Oxygen ; Oxygen evolution reactions ; oxygen vacancy ; Photoanodes ; Photoelectric effect ; Photoelectric emission ; Stability ; Vacancies ; Valence ; Vanadates</subject><ispartof>Angewandte Chemie International Edition, 2021-01, Vol.60 (3), p.1433-1440</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9857-9804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202012550$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202012550$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Pan, Jin‐Bo</creatorcontrib><creatorcontrib>Wang, Bing‐Hao</creatorcontrib><creatorcontrib>Wang, Jin‐Bo</creatorcontrib><creatorcontrib>Ding, Hong‐Zhi</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Liu, Xuan</creatorcontrib><creatorcontrib>Zhang, Jin‐Rong</creatorcontrib><creatorcontrib>Shen, Sheng</creatorcontrib><creatorcontrib>Guo, Jun‐Kang</creatorcontrib><creatorcontrib>Chen, Lang</creatorcontrib><creatorcontrib>Au, Chak‐Tong</creatorcontrib><creatorcontrib>Jiang, Li‐Long</creatorcontrib><creatorcontrib>Yin, Shuang‐Feng</creatorcontrib><title>Activity and Stability Boosting of an Oxygen‐Vacancy‐Rich BiVO4 Photoanode by NiFe‐MOFs Thin Layer for Water Oxidation</title><title>Angewandte Chemie International Edition</title><description>The introduction of oxygen vacancies (Ov) has been regarded as an effective method to enhance the catalytic performance of photoanodes in oxygen evolution reaction (OER). However, their stability under highly oxidizing environment is questionable but was rarely studied. Herein, NiFe‐metal–organic framework (NiFe‐MOFs) was conformally coated on oxygen‐vacancy‐rich BiVO4 (Ov‐BiVO4) as the protective layer and cocatalyst, forming a core–shell structure with caffeic acid as bridging agent. The as‐synthesized Ov‐BiVO4@NiFe‐MOFs exhibits enhanced stability and a remarkable photocurrent density of 5.3±0.15 mA cm−2 at 1.23 V (vs. RHE). The reduced coordination number of Ni(Fe)‐O and elevated valence state of Ni(Fe) in NiFe‐MOFs layer greatly bolster OER, and the shifting of oxygen evolution sites from Ov‐BiVO4 to NiFe‐MOFs promotes Ov stabilization. Ovs can be effectively preserved by the coating of a thin NiFe‐MOFs layer, leading to a photoanode of enhanced photocurrent and stability.
A core–shell Ov‐BiVO4@NiFe‐MOFs photoanode was constructed via a coordination‐assisted self‐assembly method. A NiFe‐MOFs thin layer acts as protective layer and cocatalyst to shift active sites from oxygen vacancies to NiFe‐MOFs, leading to improved stability and activity for OER. This molecular‐based approach tailors the coordination and electronic structure of active sites and provides mechanistic insights for rational design of photocatalysts.</description><subject>Bismuth oxides</subject><subject>BiVO4 photoanode</subject><subject>Caffeic acid</subject><subject>Coordination numbers</subject><subject>Core-shell structure</subject><subject>Intermetallic compounds</subject><subject>Iron</subject><subject>Iron compounds</subject><subject>Metal-organic frameworks</subject><subject>Nickel compounds</subject><subject>NiFe-MOFs</subject><subject>OER</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>oxygen vacancy</subject><subject>Photoanodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Stability</subject><subject>Vacancies</subject><subject>Valence</subject><subject>Vanadates</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc9Kw0AYxIMoWKtXzwtevKTu_yTHtlgt1Ea01uOySXbblXS3Jqk24MFH8Bl9ErdUPHj6ZpgfwwcTBOcI9hCE-Epao3oYYogwY_Ag6CCGUUiiiBx6TQkJo5ih4-Ckrl88H8eQd4KPft6YN9O0QNoCPDYyM-XODZyrG2MXwGmfgHTbLpT9_vyay1zavPXqweRLMDDzlIL7pWuctK5QIGvB1IyUz-_SUQ1mS2PBRLaqAtpV4Fk2XqVbU8jGOHsaHGlZ1urs93aDp9H1bHgbTtKb8bA_CReEJzDEOlOZQoolPMsxLxguWII1JpqjnMY6oVCzQioaxTjGmOqMaBxxxWVOM5lA0g0u973ryr1uVN2IlalzVZbSKrepBaY0ppBClHj04h_64jaV9d95KuIxhzRinkr21LspVSvWlVnJqhUIit0SYreE-FtC9Kfj6z9HfgAeb4GP</recordid><startdate>20210118</startdate><enddate>20210118</enddate><creator>Pan, Jin‐Bo</creator><creator>Wang, Bing‐Hao</creator><creator>Wang, Jin‐Bo</creator><creator>Ding, Hong‐Zhi</creator><creator>Zhou, Wei</creator><creator>Liu, Xuan</creator><creator>Zhang, Jin‐Rong</creator><creator>Shen, Sheng</creator><creator>Guo, Jun‐Kang</creator><creator>Chen, Lang</creator><creator>Au, Chak‐Tong</creator><creator>Jiang, Li‐Long</creator><creator>Yin, Shuang‐Feng</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9857-9804</orcidid></search><sort><creationdate>20210118</creationdate><title>Activity and Stability Boosting of an Oxygen‐Vacancy‐Rich BiVO4 Photoanode by NiFe‐MOFs Thin Layer for Water Oxidation</title><author>Pan, Jin‐Bo ; Wang, Bing‐Hao ; Wang, Jin‐Bo ; Ding, Hong‐Zhi ; Zhou, Wei ; Liu, Xuan ; Zhang, Jin‐Rong ; Shen, Sheng ; Guo, Jun‐Kang ; Chen, Lang ; Au, Chak‐Tong ; Jiang, Li‐Long ; Yin, Shuang‐Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3690-2fbebe1e596bc26d52d592f23f61c48f940f5dae47828224fb3f276e6ac4ba903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bismuth oxides</topic><topic>BiVO4 photoanode</topic><topic>Caffeic acid</topic><topic>Coordination numbers</topic><topic>Core-shell structure</topic><topic>Intermetallic compounds</topic><topic>Iron</topic><topic>Iron compounds</topic><topic>Metal-organic frameworks</topic><topic>Nickel compounds</topic><topic>NiFe-MOFs</topic><topic>OER</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>oxygen vacancy</topic><topic>Photoanodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Stability</topic><topic>Vacancies</topic><topic>Valence</topic><topic>Vanadates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Jin‐Bo</creatorcontrib><creatorcontrib>Wang, Bing‐Hao</creatorcontrib><creatorcontrib>Wang, Jin‐Bo</creatorcontrib><creatorcontrib>Ding, Hong‐Zhi</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Liu, Xuan</creatorcontrib><creatorcontrib>Zhang, Jin‐Rong</creatorcontrib><creatorcontrib>Shen, Sheng</creatorcontrib><creatorcontrib>Guo, Jun‐Kang</creatorcontrib><creatorcontrib>Chen, Lang</creatorcontrib><creatorcontrib>Au, Chak‐Tong</creatorcontrib><creatorcontrib>Jiang, Li‐Long</creatorcontrib><creatorcontrib>Yin, Shuang‐Feng</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Jin‐Bo</au><au>Wang, Bing‐Hao</au><au>Wang, Jin‐Bo</au><au>Ding, Hong‐Zhi</au><au>Zhou, Wei</au><au>Liu, Xuan</au><au>Zhang, Jin‐Rong</au><au>Shen, Sheng</au><au>Guo, Jun‐Kang</au><au>Chen, Lang</au><au>Au, Chak‐Tong</au><au>Jiang, Li‐Long</au><au>Yin, Shuang‐Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activity and Stability Boosting of an Oxygen‐Vacancy‐Rich BiVO4 Photoanode by NiFe‐MOFs Thin Layer for Water Oxidation</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2021-01-18</date><risdate>2021</risdate><volume>60</volume><issue>3</issue><spage>1433</spage><epage>1440</epage><pages>1433-1440</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The introduction of oxygen vacancies (Ov) has been regarded as an effective method to enhance the catalytic performance of photoanodes in oxygen evolution reaction (OER). However, their stability under highly oxidizing environment is questionable but was rarely studied. Herein, NiFe‐metal–organic framework (NiFe‐MOFs) was conformally coated on oxygen‐vacancy‐rich BiVO4 (Ov‐BiVO4) as the protective layer and cocatalyst, forming a core–shell structure with caffeic acid as bridging agent. The as‐synthesized Ov‐BiVO4@NiFe‐MOFs exhibits enhanced stability and a remarkable photocurrent density of 5.3±0.15 mA cm−2 at 1.23 V (vs. RHE). The reduced coordination number of Ni(Fe)‐O and elevated valence state of Ni(Fe) in NiFe‐MOFs layer greatly bolster OER, and the shifting of oxygen evolution sites from Ov‐BiVO4 to NiFe‐MOFs promotes Ov stabilization. Ovs can be effectively preserved by the coating of a thin NiFe‐MOFs layer, leading to a photoanode of enhanced photocurrent and stability.
A core–shell Ov‐BiVO4@NiFe‐MOFs photoanode was constructed via a coordination‐assisted self‐assembly method. A NiFe‐MOFs thin layer acts as protective layer and cocatalyst to shift active sites from oxygen vacancies to NiFe‐MOFs, leading to improved stability and activity for OER. This molecular‐based approach tailors the coordination and electronic structure of active sites and provides mechanistic insights for rational design of photocatalysts.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202012550</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-9857-9804</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2021-01, Vol.60 (3), p.1433-1440 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2448404019 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Bismuth oxides BiVO4 photoanode Caffeic acid Coordination numbers Core-shell structure Intermetallic compounds Iron Iron compounds Metal-organic frameworks Nickel compounds NiFe-MOFs OER Oxidation Oxygen Oxygen evolution reactions oxygen vacancy Photoanodes Photoelectric effect Photoelectric emission Stability Vacancies Valence Vanadates |
title | Activity and Stability Boosting of an Oxygen‐Vacancy‐Rich BiVO4 Photoanode by NiFe‐MOFs Thin Layer for Water Oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activity%20and%20Stability%20Boosting%20of%20an%20Oxygen%E2%80%90Vacancy%E2%80%90Rich%20BiVO4%20Photoanode%20by%20NiFe%E2%80%90MOFs%20Thin%20Layer%20for%20Water%20Oxidation&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Pan,%20Jin%E2%80%90Bo&rft.date=2021-01-18&rft.volume=60&rft.issue=3&rft.spage=1433&rft.epage=1440&rft.pages=1433-1440&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202012550&rft_dat=%3Cproquest_wiley%3E2448404019%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476860475&rft_id=info:pmid/&rfr_iscdi=true |