Activity and Stability Boosting of an Oxygen‐Vacancy‐Rich BiVO4 Photoanode by NiFe‐MOFs Thin Layer for Water Oxidation

The introduction of oxygen vacancies (Ov) has been regarded as an effective method to enhance the catalytic performance of photoanodes in oxygen evolution reaction (OER). However, their stability under highly oxidizing environment is questionable but was rarely studied. Herein, NiFe‐metal–organic fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2021-01, Vol.60 (3), p.1433-1440
Hauptverfasser: Pan, Jin‐Bo, Wang, Bing‐Hao, Wang, Jin‐Bo, Ding, Hong‐Zhi, Zhou, Wei, Liu, Xuan, Zhang, Jin‐Rong, Shen, Sheng, Guo, Jun‐Kang, Chen, Lang, Au, Chak‐Tong, Jiang, Li‐Long, Yin, Shuang‐Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1440
container_issue 3
container_start_page 1433
container_title Angewandte Chemie International Edition
container_volume 60
creator Pan, Jin‐Bo
Wang, Bing‐Hao
Wang, Jin‐Bo
Ding, Hong‐Zhi
Zhou, Wei
Liu, Xuan
Zhang, Jin‐Rong
Shen, Sheng
Guo, Jun‐Kang
Chen, Lang
Au, Chak‐Tong
Jiang, Li‐Long
Yin, Shuang‐Feng
description The introduction of oxygen vacancies (Ov) has been regarded as an effective method to enhance the catalytic performance of photoanodes in oxygen evolution reaction (OER). However, their stability under highly oxidizing environment is questionable but was rarely studied. Herein, NiFe‐metal–organic framework (NiFe‐MOFs) was conformally coated on oxygen‐vacancy‐rich BiVO4 (Ov‐BiVO4) as the protective layer and cocatalyst, forming a core–shell structure with caffeic acid as bridging agent. The as‐synthesized Ov‐BiVO4@NiFe‐MOFs exhibits enhanced stability and a remarkable photocurrent density of 5.3±0.15 mA cm−2 at 1.23 V (vs. RHE). The reduced coordination number of Ni(Fe)‐O and elevated valence state of Ni(Fe) in NiFe‐MOFs layer greatly bolster OER, and the shifting of oxygen evolution sites from Ov‐BiVO4 to NiFe‐MOFs promotes Ov stabilization. Ovs can be effectively preserved by the coating of a thin NiFe‐MOFs layer, leading to a photoanode of enhanced photocurrent and stability. A core–shell Ov‐BiVO4@NiFe‐MOFs photoanode was constructed via a coordination‐assisted self‐assembly method. A NiFe‐MOFs thin layer acts as protective layer and cocatalyst to shift active sites from oxygen vacancies to NiFe‐MOFs, leading to improved stability and activity for OER. This molecular‐based approach tailors the coordination and electronic structure of active sites and provides mechanistic insights for rational design of photocatalysts.
doi_str_mv 10.1002/anie.202012550
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2448404019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448404019</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3690-2fbebe1e596bc26d52d592f23f61c48f940f5dae47828224fb3f276e6ac4ba903</originalsourceid><addsrcrecordid>eNpdkc9Kw0AYxIMoWKtXzwtevKTu_yTHtlgt1Ea01uOySXbblXS3Jqk24MFH8Bl9ErdUPHj6ZpgfwwcTBOcI9hCE-Epao3oYYogwY_Ag6CCGUUiiiBx6TQkJo5ih4-Ckrl88H8eQd4KPft6YN9O0QNoCPDYyM-XODZyrG2MXwGmfgHTbLpT9_vyay1zavPXqweRLMDDzlIL7pWuctK5QIGvB1IyUz-_SUQ1mS2PBRLaqAtpV4Fk2XqVbU8jGOHsaHGlZ1urs93aDp9H1bHgbTtKb8bA_CReEJzDEOlOZQoolPMsxLxguWII1JpqjnMY6oVCzQioaxTjGmOqMaBxxxWVOM5lA0g0u973ryr1uVN2IlalzVZbSKrepBaY0ppBClHj04h_64jaV9d95KuIxhzRinkr21LspVSvWlVnJqhUIit0SYreE-FtC9Kfj6z9HfgAeb4GP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476860475</pqid></control><display><type>article</type><title>Activity and Stability Boosting of an Oxygen‐Vacancy‐Rich BiVO4 Photoanode by NiFe‐MOFs Thin Layer for Water Oxidation</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Pan, Jin‐Bo ; Wang, Bing‐Hao ; Wang, Jin‐Bo ; Ding, Hong‐Zhi ; Zhou, Wei ; Liu, Xuan ; Zhang, Jin‐Rong ; Shen, Sheng ; Guo, Jun‐Kang ; Chen, Lang ; Au, Chak‐Tong ; Jiang, Li‐Long ; Yin, Shuang‐Feng</creator><creatorcontrib>Pan, Jin‐Bo ; Wang, Bing‐Hao ; Wang, Jin‐Bo ; Ding, Hong‐Zhi ; Zhou, Wei ; Liu, Xuan ; Zhang, Jin‐Rong ; Shen, Sheng ; Guo, Jun‐Kang ; Chen, Lang ; Au, Chak‐Tong ; Jiang, Li‐Long ; Yin, Shuang‐Feng</creatorcontrib><description>The introduction of oxygen vacancies (Ov) has been regarded as an effective method to enhance the catalytic performance of photoanodes in oxygen evolution reaction (OER). However, their stability under highly oxidizing environment is questionable but was rarely studied. Herein, NiFe‐metal–organic framework (NiFe‐MOFs) was conformally coated on oxygen‐vacancy‐rich BiVO4 (Ov‐BiVO4) as the protective layer and cocatalyst, forming a core–shell structure with caffeic acid as bridging agent. The as‐synthesized Ov‐BiVO4@NiFe‐MOFs exhibits enhanced stability and a remarkable photocurrent density of 5.3±0.15 mA cm−2 at 1.23 V (vs. RHE). The reduced coordination number of Ni(Fe)‐O and elevated valence state of Ni(Fe) in NiFe‐MOFs layer greatly bolster OER, and the shifting of oxygen evolution sites from Ov‐BiVO4 to NiFe‐MOFs promotes Ov stabilization. Ovs can be effectively preserved by the coating of a thin NiFe‐MOFs layer, leading to a photoanode of enhanced photocurrent and stability. A core–shell Ov‐BiVO4@NiFe‐MOFs photoanode was constructed via a coordination‐assisted self‐assembly method. A NiFe‐MOFs thin layer acts as protective layer and cocatalyst to shift active sites from oxygen vacancies to NiFe‐MOFs, leading to improved stability and activity for OER. This molecular‐based approach tailors the coordination and electronic structure of active sites and provides mechanistic insights for rational design of photocatalysts.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202012550</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bismuth oxides ; BiVO4 photoanode ; Caffeic acid ; Coordination numbers ; Core-shell structure ; Intermetallic compounds ; Iron ; Iron compounds ; Metal-organic frameworks ; Nickel compounds ; NiFe-MOFs ; OER ; Oxidation ; Oxygen ; Oxygen evolution reactions ; oxygen vacancy ; Photoanodes ; Photoelectric effect ; Photoelectric emission ; Stability ; Vacancies ; Valence ; Vanadates</subject><ispartof>Angewandte Chemie International Edition, 2021-01, Vol.60 (3), p.1433-1440</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9857-9804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202012550$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202012550$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Pan, Jin‐Bo</creatorcontrib><creatorcontrib>Wang, Bing‐Hao</creatorcontrib><creatorcontrib>Wang, Jin‐Bo</creatorcontrib><creatorcontrib>Ding, Hong‐Zhi</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Liu, Xuan</creatorcontrib><creatorcontrib>Zhang, Jin‐Rong</creatorcontrib><creatorcontrib>Shen, Sheng</creatorcontrib><creatorcontrib>Guo, Jun‐Kang</creatorcontrib><creatorcontrib>Chen, Lang</creatorcontrib><creatorcontrib>Au, Chak‐Tong</creatorcontrib><creatorcontrib>Jiang, Li‐Long</creatorcontrib><creatorcontrib>Yin, Shuang‐Feng</creatorcontrib><title>Activity and Stability Boosting of an Oxygen‐Vacancy‐Rich BiVO4 Photoanode by NiFe‐MOFs Thin Layer for Water Oxidation</title><title>Angewandte Chemie International Edition</title><description>The introduction of oxygen vacancies (Ov) has been regarded as an effective method to enhance the catalytic performance of photoanodes in oxygen evolution reaction (OER). However, their stability under highly oxidizing environment is questionable but was rarely studied. Herein, NiFe‐metal–organic framework (NiFe‐MOFs) was conformally coated on oxygen‐vacancy‐rich BiVO4 (Ov‐BiVO4) as the protective layer and cocatalyst, forming a core–shell structure with caffeic acid as bridging agent. The as‐synthesized Ov‐BiVO4@NiFe‐MOFs exhibits enhanced stability and a remarkable photocurrent density of 5.3±0.15 mA cm−2 at 1.23 V (vs. RHE). The reduced coordination number of Ni(Fe)‐O and elevated valence state of Ni(Fe) in NiFe‐MOFs layer greatly bolster OER, and the shifting of oxygen evolution sites from Ov‐BiVO4 to NiFe‐MOFs promotes Ov stabilization. Ovs can be effectively preserved by the coating of a thin NiFe‐MOFs layer, leading to a photoanode of enhanced photocurrent and stability. A core–shell Ov‐BiVO4@NiFe‐MOFs photoanode was constructed via a coordination‐assisted self‐assembly method. A NiFe‐MOFs thin layer acts as protective layer and cocatalyst to shift active sites from oxygen vacancies to NiFe‐MOFs, leading to improved stability and activity for OER. This molecular‐based approach tailors the coordination and electronic structure of active sites and provides mechanistic insights for rational design of photocatalysts.</description><subject>Bismuth oxides</subject><subject>BiVO4 photoanode</subject><subject>Caffeic acid</subject><subject>Coordination numbers</subject><subject>Core-shell structure</subject><subject>Intermetallic compounds</subject><subject>Iron</subject><subject>Iron compounds</subject><subject>Metal-organic frameworks</subject><subject>Nickel compounds</subject><subject>NiFe-MOFs</subject><subject>OER</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>oxygen vacancy</subject><subject>Photoanodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Stability</subject><subject>Vacancies</subject><subject>Valence</subject><subject>Vanadates</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc9Kw0AYxIMoWKtXzwtevKTu_yTHtlgt1Ea01uOySXbblXS3Jqk24MFH8Bl9ErdUPHj6ZpgfwwcTBOcI9hCE-Epao3oYYogwY_Ag6CCGUUiiiBx6TQkJo5ih4-Ckrl88H8eQd4KPft6YN9O0QNoCPDYyM-XODZyrG2MXwGmfgHTbLpT9_vyay1zavPXqweRLMDDzlIL7pWuctK5QIGvB1IyUz-_SUQ1mS2PBRLaqAtpV4Fk2XqVbU8jGOHsaHGlZ1urs93aDp9H1bHgbTtKb8bA_CReEJzDEOlOZQoolPMsxLxguWII1JpqjnMY6oVCzQioaxTjGmOqMaBxxxWVOM5lA0g0u973ryr1uVN2IlalzVZbSKrepBaY0ppBClHj04h_64jaV9d95KuIxhzRinkr21LspVSvWlVnJqhUIit0SYreE-FtC9Kfj6z9HfgAeb4GP</recordid><startdate>20210118</startdate><enddate>20210118</enddate><creator>Pan, Jin‐Bo</creator><creator>Wang, Bing‐Hao</creator><creator>Wang, Jin‐Bo</creator><creator>Ding, Hong‐Zhi</creator><creator>Zhou, Wei</creator><creator>Liu, Xuan</creator><creator>Zhang, Jin‐Rong</creator><creator>Shen, Sheng</creator><creator>Guo, Jun‐Kang</creator><creator>Chen, Lang</creator><creator>Au, Chak‐Tong</creator><creator>Jiang, Li‐Long</creator><creator>Yin, Shuang‐Feng</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9857-9804</orcidid></search><sort><creationdate>20210118</creationdate><title>Activity and Stability Boosting of an Oxygen‐Vacancy‐Rich BiVO4 Photoanode by NiFe‐MOFs Thin Layer for Water Oxidation</title><author>Pan, Jin‐Bo ; Wang, Bing‐Hao ; Wang, Jin‐Bo ; Ding, Hong‐Zhi ; Zhou, Wei ; Liu, Xuan ; Zhang, Jin‐Rong ; Shen, Sheng ; Guo, Jun‐Kang ; Chen, Lang ; Au, Chak‐Tong ; Jiang, Li‐Long ; Yin, Shuang‐Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3690-2fbebe1e596bc26d52d592f23f61c48f940f5dae47828224fb3f276e6ac4ba903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bismuth oxides</topic><topic>BiVO4 photoanode</topic><topic>Caffeic acid</topic><topic>Coordination numbers</topic><topic>Core-shell structure</topic><topic>Intermetallic compounds</topic><topic>Iron</topic><topic>Iron compounds</topic><topic>Metal-organic frameworks</topic><topic>Nickel compounds</topic><topic>NiFe-MOFs</topic><topic>OER</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>oxygen vacancy</topic><topic>Photoanodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Stability</topic><topic>Vacancies</topic><topic>Valence</topic><topic>Vanadates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Jin‐Bo</creatorcontrib><creatorcontrib>Wang, Bing‐Hao</creatorcontrib><creatorcontrib>Wang, Jin‐Bo</creatorcontrib><creatorcontrib>Ding, Hong‐Zhi</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Liu, Xuan</creatorcontrib><creatorcontrib>Zhang, Jin‐Rong</creatorcontrib><creatorcontrib>Shen, Sheng</creatorcontrib><creatorcontrib>Guo, Jun‐Kang</creatorcontrib><creatorcontrib>Chen, Lang</creatorcontrib><creatorcontrib>Au, Chak‐Tong</creatorcontrib><creatorcontrib>Jiang, Li‐Long</creatorcontrib><creatorcontrib>Yin, Shuang‐Feng</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Jin‐Bo</au><au>Wang, Bing‐Hao</au><au>Wang, Jin‐Bo</au><au>Ding, Hong‐Zhi</au><au>Zhou, Wei</au><au>Liu, Xuan</au><au>Zhang, Jin‐Rong</au><au>Shen, Sheng</au><au>Guo, Jun‐Kang</au><au>Chen, Lang</au><au>Au, Chak‐Tong</au><au>Jiang, Li‐Long</au><au>Yin, Shuang‐Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activity and Stability Boosting of an Oxygen‐Vacancy‐Rich BiVO4 Photoanode by NiFe‐MOFs Thin Layer for Water Oxidation</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2021-01-18</date><risdate>2021</risdate><volume>60</volume><issue>3</issue><spage>1433</spage><epage>1440</epage><pages>1433-1440</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The introduction of oxygen vacancies (Ov) has been regarded as an effective method to enhance the catalytic performance of photoanodes in oxygen evolution reaction (OER). However, their stability under highly oxidizing environment is questionable but was rarely studied. Herein, NiFe‐metal–organic framework (NiFe‐MOFs) was conformally coated on oxygen‐vacancy‐rich BiVO4 (Ov‐BiVO4) as the protective layer and cocatalyst, forming a core–shell structure with caffeic acid as bridging agent. The as‐synthesized Ov‐BiVO4@NiFe‐MOFs exhibits enhanced stability and a remarkable photocurrent density of 5.3±0.15 mA cm−2 at 1.23 V (vs. RHE). The reduced coordination number of Ni(Fe)‐O and elevated valence state of Ni(Fe) in NiFe‐MOFs layer greatly bolster OER, and the shifting of oxygen evolution sites from Ov‐BiVO4 to NiFe‐MOFs promotes Ov stabilization. Ovs can be effectively preserved by the coating of a thin NiFe‐MOFs layer, leading to a photoanode of enhanced photocurrent and stability. A core–shell Ov‐BiVO4@NiFe‐MOFs photoanode was constructed via a coordination‐assisted self‐assembly method. A NiFe‐MOFs thin layer acts as protective layer and cocatalyst to shift active sites from oxygen vacancies to NiFe‐MOFs, leading to improved stability and activity for OER. This molecular‐based approach tailors the coordination and electronic structure of active sites and provides mechanistic insights for rational design of photocatalysts.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202012550</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-9857-9804</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2021-01, Vol.60 (3), p.1433-1440
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2448404019
source Wiley Online Library - AutoHoldings Journals
subjects Bismuth oxides
BiVO4 photoanode
Caffeic acid
Coordination numbers
Core-shell structure
Intermetallic compounds
Iron
Iron compounds
Metal-organic frameworks
Nickel compounds
NiFe-MOFs
OER
Oxidation
Oxygen
Oxygen evolution reactions
oxygen vacancy
Photoanodes
Photoelectric effect
Photoelectric emission
Stability
Vacancies
Valence
Vanadates
title Activity and Stability Boosting of an Oxygen‐Vacancy‐Rich BiVO4 Photoanode by NiFe‐MOFs Thin Layer for Water Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activity%20and%20Stability%20Boosting%20of%20an%20Oxygen%E2%80%90Vacancy%E2%80%90Rich%20BiVO4%20Photoanode%20by%20NiFe%E2%80%90MOFs%20Thin%20Layer%20for%20Water%20Oxidation&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Pan,%20Jin%E2%80%90Bo&rft.date=2021-01-18&rft.volume=60&rft.issue=3&rft.spage=1433&rft.epage=1440&rft.pages=1433-1440&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202012550&rft_dat=%3Cproquest_wiley%3E2448404019%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476860475&rft_id=info:pmid/&rfr_iscdi=true