Colour deconvolution: stain unmixing in histological imaging

Abstract Motivation Microscopy images of stained cells and tissues play a central role in most biomedical experiments and routine histopathology. Storing colour histological images digitally opens the possibility to process numerically colour distribution and intensity to extract quantitative data....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2021-06, Vol.37 (10), p.1485-1487
Hauptverfasser: Landini, Gabriel, Martinelli, Giovanni, Piccinini, Filippo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1487
container_issue 10
container_start_page 1485
container_title Bioinformatics
container_volume 37
creator Landini, Gabriel
Martinelli, Giovanni
Piccinini, Filippo
description Abstract Motivation Microscopy images of stained cells and tissues play a central role in most biomedical experiments and routine histopathology. Storing colour histological images digitally opens the possibility to process numerically colour distribution and intensity to extract quantitative data. Among those numerical procedures are colour deconvolution, which enable decomposing an RGB image into channels representing the optical absorbance and transmittance of the dyes when their RGB representation is known. Consequently, a range of new applications become possible for morphological and histochemical segmentation, automated marker localization and image enhancement. Availability and implementation Colour deconvolution is presented here in two open-source forms: a MATLAB program/function and an ImageJ plugin written in Java. Both versions run in Windows, Macintosh and UNIX-based systems under the respective platforms. Source code and further documentation are available at: https://blog.bham.ac.uk/intellimic/g-landini-software/colour-deconvolution-2/. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btaa847
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2447842374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btaa847</oup_id><sourcerecordid>2447842374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-3a0c8e370e251d7edd62249c0abf922a9fd68521acf9da03bd2d04a50285ae183</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-BenRSzVfbVLxIotfsOBFz2GapGukTdYkFf33RnYv3jzNy_A8w_AidE7wJcEdu-pdcH4IcYLsdLrqM4Dk4gAtCG9xTXHTHZbMWlFzidkxOknpHeOGcM4X6GYVxjDHylgd_GcY5-yCv65SBuer2U_uy_lNVfKbS7mgG6dhrNwEm7I_RUcDjMme7ecSvd7fvawe6_Xzw9Pqdl1rJmSuGWAtLRPY0oYYYY1pKeWdxtAPHaXQDaaVDSWgh84AZr2hBnNoMJUNWCLZEl3s7m5j-JhtympySdtxBG_DnBTlXEhOmeAFbXeojiGlaAe1jeXb-K0IVr91qb91qX1dRSQ7Mczb_zo_TGx2pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447842374</pqid></control><display><type>article</type><title>Colour deconvolution: stain unmixing in histological imaging</title><source>Oxford Journals Open Access Collection</source><creator>Landini, Gabriel ; Martinelli, Giovanni ; Piccinini, Filippo</creator><creatorcontrib>Landini, Gabriel ; Martinelli, Giovanni ; Piccinini, Filippo</creatorcontrib><description>Abstract Motivation Microscopy images of stained cells and tissues play a central role in most biomedical experiments and routine histopathology. Storing colour histological images digitally opens the possibility to process numerically colour distribution and intensity to extract quantitative data. Among those numerical procedures are colour deconvolution, which enable decomposing an RGB image into channels representing the optical absorbance and transmittance of the dyes when their RGB representation is known. Consequently, a range of new applications become possible for morphological and histochemical segmentation, automated marker localization and image enhancement. Availability and implementation Colour deconvolution is presented here in two open-source forms: a MATLAB program/function and an ImageJ plugin written in Java. Both versions run in Windows, Macintosh and UNIX-based systems under the respective platforms. Source code and further documentation are available at: https://blog.bham.ac.uk/intellimic/g-landini-software/colour-deconvolution-2/. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btaa847</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Bioinformatics, 2021-06, Vol.37 (10), p.1485-1487</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-3a0c8e370e251d7edd62249c0abf922a9fd68521acf9da03bd2d04a50285ae183</citedby><cites>FETCH-LOGICAL-c378t-3a0c8e370e251d7edd62249c0abf922a9fd68521acf9da03bd2d04a50285ae183</cites><orcidid>0000-0002-9689-0989 ; 0000-0002-0371-7782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btaa847$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Landini, Gabriel</creatorcontrib><creatorcontrib>Martinelli, Giovanni</creatorcontrib><creatorcontrib>Piccinini, Filippo</creatorcontrib><title>Colour deconvolution: stain unmixing in histological imaging</title><title>Bioinformatics</title><description>Abstract Motivation Microscopy images of stained cells and tissues play a central role in most biomedical experiments and routine histopathology. Storing colour histological images digitally opens the possibility to process numerically colour distribution and intensity to extract quantitative data. Among those numerical procedures are colour deconvolution, which enable decomposing an RGB image into channels representing the optical absorbance and transmittance of the dyes when their RGB representation is known. Consequently, a range of new applications become possible for morphological and histochemical segmentation, automated marker localization and image enhancement. Availability and implementation Colour deconvolution is presented here in two open-source forms: a MATLAB program/function and an ImageJ plugin written in Java. Both versions run in Windows, Macintosh and UNIX-based systems under the respective platforms. Source code and further documentation are available at: https://blog.bham.ac.uk/intellimic/g-landini-software/colour-deconvolution-2/. Supplementary information Supplementary data are available at Bioinformatics online.</description><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouK7-BenRSzVfbVLxIotfsOBFz2GapGukTdYkFf33RnYv3jzNy_A8w_AidE7wJcEdu-pdcH4IcYLsdLrqM4Dk4gAtCG9xTXHTHZbMWlFzidkxOknpHeOGcM4X6GYVxjDHylgd_GcY5-yCv65SBuer2U_uy_lNVfKbS7mgG6dhrNwEm7I_RUcDjMme7ecSvd7fvawe6_Xzw9Pqdl1rJmSuGWAtLRPY0oYYYY1pKeWdxtAPHaXQDaaVDSWgh84AZr2hBnNoMJUNWCLZEl3s7m5j-JhtympySdtxBG_DnBTlXEhOmeAFbXeojiGlaAe1jeXb-K0IVr91qb91qX1dRSQ7Mczb_zo_TGx2pw</recordid><startdate>20210616</startdate><enddate>20210616</enddate><creator>Landini, Gabriel</creator><creator>Martinelli, Giovanni</creator><creator>Piccinini, Filippo</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9689-0989</orcidid><orcidid>https://orcid.org/0000-0002-0371-7782</orcidid></search><sort><creationdate>20210616</creationdate><title>Colour deconvolution: stain unmixing in histological imaging</title><author>Landini, Gabriel ; Martinelli, Giovanni ; Piccinini, Filippo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-3a0c8e370e251d7edd62249c0abf922a9fd68521acf9da03bd2d04a50285ae183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Landini, Gabriel</creatorcontrib><creatorcontrib>Martinelli, Giovanni</creatorcontrib><creatorcontrib>Piccinini, Filippo</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Landini, Gabriel</au><au>Martinelli, Giovanni</au><au>Piccinini, Filippo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colour deconvolution: stain unmixing in histological imaging</atitle><jtitle>Bioinformatics</jtitle><date>2021-06-16</date><risdate>2021</risdate><volume>37</volume><issue>10</issue><spage>1485</spage><epage>1487</epage><pages>1485-1487</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Microscopy images of stained cells and tissues play a central role in most biomedical experiments and routine histopathology. Storing colour histological images digitally opens the possibility to process numerically colour distribution and intensity to extract quantitative data. Among those numerical procedures are colour deconvolution, which enable decomposing an RGB image into channels representing the optical absorbance and transmittance of the dyes when their RGB representation is known. Consequently, a range of new applications become possible for morphological and histochemical segmentation, automated marker localization and image enhancement. Availability and implementation Colour deconvolution is presented here in two open-source forms: a MATLAB program/function and an ImageJ plugin written in Java. Both versions run in Windows, Macintosh and UNIX-based systems under the respective platforms. Source code and further documentation are available at: https://blog.bham.ac.uk/intellimic/g-landini-software/colour-deconvolution-2/. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><pub>Oxford University Press</pub><doi>10.1093/bioinformatics/btaa847</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-9689-0989</orcidid><orcidid>https://orcid.org/0000-0002-0371-7782</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2021-06, Vol.37 (10), p.1485-1487
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_2447842374
source Oxford Journals Open Access Collection
title Colour deconvolution: stain unmixing in histological imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colour%20deconvolution:%20stain%20unmixing%20in%20histological%20imaging&rft.jtitle=Bioinformatics&rft.au=Landini,%20Gabriel&rft.date=2021-06-16&rft.volume=37&rft.issue=10&rft.spage=1485&rft.epage=1487&rft.pages=1485-1487&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btaa847&rft_dat=%3Cproquest_TOX%3E2447842374%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447842374&rft_id=info:pmid/&rft_oup_id=10.1093/bioinformatics/btaa847&rfr_iscdi=true