Prognostic Integrated Image-Based Immune and Molecular Profiling in Early-Stage Endometrial Cancer

Optimum risk stratification in early-stage endometrial cancer combines clinicopathologic factors and the molecular endometrial cancer classification defined by The Cancer Genome Atlas (TCGA). It is unclear whether analysis of intratumoral immune infiltrate improves this. We developed a machine-learn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer immunology research 2020-12, Vol.8 (12), p.1508-1519
Hauptverfasser: Horeweg, Nanda, de Bruyn, Marco, Nout, Remi A, Stelloo, Ellen, Kedziersza, Katarzyna, León-Castillo, Alicia, Plat, Annechien, Mertz, Kirsten D, Osse, Michelle, Jürgenliemk-Schulz, Ina M, Lutgens, Ludy C H W, Jobsen, Jan J, van der Steen-Banasik, Elzbieta M, Smit, Vincent T, Creutzberg, Carien L, Bosse, Tjalling, Nijman, Hans W, Koelzer, Viktor H, Church, David N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1519
container_issue 12
container_start_page 1508
container_title Cancer immunology research
container_volume 8
creator Horeweg, Nanda
de Bruyn, Marco
Nout, Remi A
Stelloo, Ellen
Kedziersza, Katarzyna
León-Castillo, Alicia
Plat, Annechien
Mertz, Kirsten D
Osse, Michelle
Jürgenliemk-Schulz, Ina M
Lutgens, Ludy C H W
Jobsen, Jan J
van der Steen-Banasik, Elzbieta M
Smit, Vincent T
Creutzberg, Carien L
Bosse, Tjalling
Nijman, Hans W
Koelzer, Viktor H
Church, David N
description Optimum risk stratification in early-stage endometrial cancer combines clinicopathologic factors and the molecular endometrial cancer classification defined by The Cancer Genome Atlas (TCGA). It is unclear whether analysis of intratumoral immune infiltrate improves this. We developed a machine-learning, image-based algorithm to quantify density of CD8 and CD103 immune cells in tumor epithelium and stroma in 695 stage I endometrioid endometrial cancers from the PORTEC-1 and -2 trials. The relationship between immune cell density and clinicopathologic/molecular factors was analyzed by hierarchical clustering and multiple regression. The prognostic value of immune infiltrate by cell type and location was analyzed by univariable and multivariable Cox regression, incorporating the molecular endometrial cancer classification. Tumor-infiltrating immune cell density varied substantially between cases, and more modestly by immune cell type and location. Clustering revealed three groups with high, intermediate, and low densities, with highly significant variation in the proportion of molecular endometrial cancer subgroups between them. Univariable analysis revealed intraepithelial CD8 cell density as the strongest predictor of endometrial cancer recurrence; multivariable analysis confirmed this was independent of pathologic factors and molecular subgroup. Exploratory analysis suggested this association was not uniform across molecular subgroups, but greatest in tumors with mutant p53 and absent in DNA mismatch repair-deficient cancers. Thus, this work identified that quantification of intraepithelial CD8 cells improved upon the prognostic utility of the molecular endometrial cancer classification in early-stage endometrial cancer.
doi_str_mv 10.1158/2326-6066.CIR-20-0149
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2447839491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447839491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-e55762dcc93256b28633b59cf0b98b98a86529fdf4e5bfd4e0539e89a39742943</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRbKn9Cco--pK62Vuyj1qqBiqKl-dls5mESLKpu8lD_72JrR0G5jCcMwMfQtcxWcWxSO8oozKSRMrVOnuPKIlIzNUZmh_3CT8_aSlnaBnCNxkrTXks-CWaMaqUIoTNUf7mu8p1oa8tzlwPlTc9FDhrTQXRgwl_uh0cYOMK_NI1YIfGeDzGyrqpXYVrhzfGN_voox8zeOOKroXe16bBa-Ms-Ct0UZomwPI4F-jrcfO5fo62r0_Z-n4bWSZkH4EQiaSFtYpRIXOaSsZyoWxJcpWObVIpqCqLkoPIy4IDEUxBqgxTCaeKswW6Pdzd-e5ngNDrtg4WmsY46IagKedJyhRX8WgVB6v1XQgeSr3zdWv8XsdET4T1RE9P9PRIWFOiJ8Jj7ub4YshbKE6pf57sF-XCdnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447839491</pqid></control><display><type>article</type><title>Prognostic Integrated Image-Based Immune and Molecular Profiling in Early-Stage Endometrial Cancer</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Horeweg, Nanda ; de Bruyn, Marco ; Nout, Remi A ; Stelloo, Ellen ; Kedziersza, Katarzyna ; León-Castillo, Alicia ; Plat, Annechien ; Mertz, Kirsten D ; Osse, Michelle ; Jürgenliemk-Schulz, Ina M ; Lutgens, Ludy C H W ; Jobsen, Jan J ; van der Steen-Banasik, Elzbieta M ; Smit, Vincent T ; Creutzberg, Carien L ; Bosse, Tjalling ; Nijman, Hans W ; Koelzer, Viktor H ; Church, David N</creator><creatorcontrib>Horeweg, Nanda ; de Bruyn, Marco ; Nout, Remi A ; Stelloo, Ellen ; Kedziersza, Katarzyna ; León-Castillo, Alicia ; Plat, Annechien ; Mertz, Kirsten D ; Osse, Michelle ; Jürgenliemk-Schulz, Ina M ; Lutgens, Ludy C H W ; Jobsen, Jan J ; van der Steen-Banasik, Elzbieta M ; Smit, Vincent T ; Creutzberg, Carien L ; Bosse, Tjalling ; Nijman, Hans W ; Koelzer, Viktor H ; Church, David N</creatorcontrib><description>Optimum risk stratification in early-stage endometrial cancer combines clinicopathologic factors and the molecular endometrial cancer classification defined by The Cancer Genome Atlas (TCGA). It is unclear whether analysis of intratumoral immune infiltrate improves this. We developed a machine-learning, image-based algorithm to quantify density of CD8 and CD103 immune cells in tumor epithelium and stroma in 695 stage I endometrioid endometrial cancers from the PORTEC-1 and -2 trials. The relationship between immune cell density and clinicopathologic/molecular factors was analyzed by hierarchical clustering and multiple regression. The prognostic value of immune infiltrate by cell type and location was analyzed by univariable and multivariable Cox regression, incorporating the molecular endometrial cancer classification. Tumor-infiltrating immune cell density varied substantially between cases, and more modestly by immune cell type and location. Clustering revealed three groups with high, intermediate, and low densities, with highly significant variation in the proportion of molecular endometrial cancer subgroups between them. Univariable analysis revealed intraepithelial CD8 cell density as the strongest predictor of endometrial cancer recurrence; multivariable analysis confirmed this was independent of pathologic factors and molecular subgroup. Exploratory analysis suggested this association was not uniform across molecular subgroups, but greatest in tumors with mutant p53 and absent in DNA mismatch repair-deficient cancers. Thus, this work identified that quantification of intraepithelial CD8 cells improved upon the prognostic utility of the molecular endometrial cancer classification in early-stage endometrial cancer.</description><identifier>ISSN: 2326-6066</identifier><identifier>EISSN: 2326-6074</identifier><identifier>DOI: 10.1158/2326-6066.CIR-20-0149</identifier><identifier>PMID: 32999003</identifier><language>eng</language><publisher>United States</publisher><subject>Aged ; Aged, 80 and over ; Antigens, CD - immunology ; Biomarkers, Tumor ; CD8-Positive T-Lymphocytes - immunology ; DNA Mismatch Repair ; Endometrial Neoplasms - genetics ; Endometrial Neoplasms - immunology ; Female ; Humans ; Integrin alpha Chains - immunology ; Linear Models ; Middle Aged ; Multivariate Analysis ; Mutation ; Neoplasm Staging ; Prognosis ; Tumor Suppressor Protein p53 - genetics</subject><ispartof>Cancer immunology research, 2020-12, Vol.8 (12), p.1508-1519</ispartof><rights>2020 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-e55762dcc93256b28633b59cf0b98b98a86529fdf4e5bfd4e0539e89a39742943</citedby><cites>FETCH-LOGICAL-c356t-e55762dcc93256b28633b59cf0b98b98a86529fdf4e5bfd4e0539e89a39742943</cites><orcidid>0000-0001-8011-2982 ; 0000-0002-4617-962X ; 0000-0002-1403-563X ; 0000-0002-8581-4753 ; 0000-0001-9206-4885 ; 0000-0003-0873-5362 ; 0000-0002-7008-4321 ; 0000-0002-3074-6925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3356,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32999003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horeweg, Nanda</creatorcontrib><creatorcontrib>de Bruyn, Marco</creatorcontrib><creatorcontrib>Nout, Remi A</creatorcontrib><creatorcontrib>Stelloo, Ellen</creatorcontrib><creatorcontrib>Kedziersza, Katarzyna</creatorcontrib><creatorcontrib>León-Castillo, Alicia</creatorcontrib><creatorcontrib>Plat, Annechien</creatorcontrib><creatorcontrib>Mertz, Kirsten D</creatorcontrib><creatorcontrib>Osse, Michelle</creatorcontrib><creatorcontrib>Jürgenliemk-Schulz, Ina M</creatorcontrib><creatorcontrib>Lutgens, Ludy C H W</creatorcontrib><creatorcontrib>Jobsen, Jan J</creatorcontrib><creatorcontrib>van der Steen-Banasik, Elzbieta M</creatorcontrib><creatorcontrib>Smit, Vincent T</creatorcontrib><creatorcontrib>Creutzberg, Carien L</creatorcontrib><creatorcontrib>Bosse, Tjalling</creatorcontrib><creatorcontrib>Nijman, Hans W</creatorcontrib><creatorcontrib>Koelzer, Viktor H</creatorcontrib><creatorcontrib>Church, David N</creatorcontrib><title>Prognostic Integrated Image-Based Immune and Molecular Profiling in Early-Stage Endometrial Cancer</title><title>Cancer immunology research</title><addtitle>Cancer Immunol Res</addtitle><description>Optimum risk stratification in early-stage endometrial cancer combines clinicopathologic factors and the molecular endometrial cancer classification defined by The Cancer Genome Atlas (TCGA). It is unclear whether analysis of intratumoral immune infiltrate improves this. We developed a machine-learning, image-based algorithm to quantify density of CD8 and CD103 immune cells in tumor epithelium and stroma in 695 stage I endometrioid endometrial cancers from the PORTEC-1 and -2 trials. The relationship between immune cell density and clinicopathologic/molecular factors was analyzed by hierarchical clustering and multiple regression. The prognostic value of immune infiltrate by cell type and location was analyzed by univariable and multivariable Cox regression, incorporating the molecular endometrial cancer classification. Tumor-infiltrating immune cell density varied substantially between cases, and more modestly by immune cell type and location. Clustering revealed three groups with high, intermediate, and low densities, with highly significant variation in the proportion of molecular endometrial cancer subgroups between them. Univariable analysis revealed intraepithelial CD8 cell density as the strongest predictor of endometrial cancer recurrence; multivariable analysis confirmed this was independent of pathologic factors and molecular subgroup. Exploratory analysis suggested this association was not uniform across molecular subgroups, but greatest in tumors with mutant p53 and absent in DNA mismatch repair-deficient cancers. Thus, this work identified that quantification of intraepithelial CD8 cells improved upon the prognostic utility of the molecular endometrial cancer classification in early-stage endometrial cancer.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Antigens, CD - immunology</subject><subject>Biomarkers, Tumor</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>DNA Mismatch Repair</subject><subject>Endometrial Neoplasms - genetics</subject><subject>Endometrial Neoplasms - immunology</subject><subject>Female</subject><subject>Humans</subject><subject>Integrin alpha Chains - immunology</subject><subject>Linear Models</subject><subject>Middle Aged</subject><subject>Multivariate Analysis</subject><subject>Mutation</subject><subject>Neoplasm Staging</subject><subject>Prognosis</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><issn>2326-6066</issn><issn>2326-6074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kFtLw0AQhRdRbKn9Cco--pK62Vuyj1qqBiqKl-dls5mESLKpu8lD_72JrR0G5jCcMwMfQtcxWcWxSO8oozKSRMrVOnuPKIlIzNUZmh_3CT8_aSlnaBnCNxkrTXks-CWaMaqUIoTNUf7mu8p1oa8tzlwPlTc9FDhrTQXRgwl_uh0cYOMK_NI1YIfGeDzGyrqpXYVrhzfGN_voox8zeOOKroXe16bBa-Ms-Ct0UZomwPI4F-jrcfO5fo62r0_Z-n4bWSZkH4EQiaSFtYpRIXOaSsZyoWxJcpWObVIpqCqLkoPIy4IDEUxBqgxTCaeKswW6Pdzd-e5ngNDrtg4WmsY46IagKedJyhRX8WgVB6v1XQgeSr3zdWv8XsdET4T1RE9P9PRIWFOiJ8Jj7ub4YshbKE6pf57sF-XCdnQ</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Horeweg, Nanda</creator><creator>de Bruyn, Marco</creator><creator>Nout, Remi A</creator><creator>Stelloo, Ellen</creator><creator>Kedziersza, Katarzyna</creator><creator>León-Castillo, Alicia</creator><creator>Plat, Annechien</creator><creator>Mertz, Kirsten D</creator><creator>Osse, Michelle</creator><creator>Jürgenliemk-Schulz, Ina M</creator><creator>Lutgens, Ludy C H W</creator><creator>Jobsen, Jan J</creator><creator>van der Steen-Banasik, Elzbieta M</creator><creator>Smit, Vincent T</creator><creator>Creutzberg, Carien L</creator><creator>Bosse, Tjalling</creator><creator>Nijman, Hans W</creator><creator>Koelzer, Viktor H</creator><creator>Church, David N</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8011-2982</orcidid><orcidid>https://orcid.org/0000-0002-4617-962X</orcidid><orcidid>https://orcid.org/0000-0002-1403-563X</orcidid><orcidid>https://orcid.org/0000-0002-8581-4753</orcidid><orcidid>https://orcid.org/0000-0001-9206-4885</orcidid><orcidid>https://orcid.org/0000-0003-0873-5362</orcidid><orcidid>https://orcid.org/0000-0002-7008-4321</orcidid><orcidid>https://orcid.org/0000-0002-3074-6925</orcidid></search><sort><creationdate>202012</creationdate><title>Prognostic Integrated Image-Based Immune and Molecular Profiling in Early-Stage Endometrial Cancer</title><author>Horeweg, Nanda ; de Bruyn, Marco ; Nout, Remi A ; Stelloo, Ellen ; Kedziersza, Katarzyna ; León-Castillo, Alicia ; Plat, Annechien ; Mertz, Kirsten D ; Osse, Michelle ; Jürgenliemk-Schulz, Ina M ; Lutgens, Ludy C H W ; Jobsen, Jan J ; van der Steen-Banasik, Elzbieta M ; Smit, Vincent T ; Creutzberg, Carien L ; Bosse, Tjalling ; Nijman, Hans W ; Koelzer, Viktor H ; Church, David N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-e55762dcc93256b28633b59cf0b98b98a86529fdf4e5bfd4e0539e89a39742943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Antigens, CD - immunology</topic><topic>Biomarkers, Tumor</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>DNA Mismatch Repair</topic><topic>Endometrial Neoplasms - genetics</topic><topic>Endometrial Neoplasms - immunology</topic><topic>Female</topic><topic>Humans</topic><topic>Integrin alpha Chains - immunology</topic><topic>Linear Models</topic><topic>Middle Aged</topic><topic>Multivariate Analysis</topic><topic>Mutation</topic><topic>Neoplasm Staging</topic><topic>Prognosis</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horeweg, Nanda</creatorcontrib><creatorcontrib>de Bruyn, Marco</creatorcontrib><creatorcontrib>Nout, Remi A</creatorcontrib><creatorcontrib>Stelloo, Ellen</creatorcontrib><creatorcontrib>Kedziersza, Katarzyna</creatorcontrib><creatorcontrib>León-Castillo, Alicia</creatorcontrib><creatorcontrib>Plat, Annechien</creatorcontrib><creatorcontrib>Mertz, Kirsten D</creatorcontrib><creatorcontrib>Osse, Michelle</creatorcontrib><creatorcontrib>Jürgenliemk-Schulz, Ina M</creatorcontrib><creatorcontrib>Lutgens, Ludy C H W</creatorcontrib><creatorcontrib>Jobsen, Jan J</creatorcontrib><creatorcontrib>van der Steen-Banasik, Elzbieta M</creatorcontrib><creatorcontrib>Smit, Vincent T</creatorcontrib><creatorcontrib>Creutzberg, Carien L</creatorcontrib><creatorcontrib>Bosse, Tjalling</creatorcontrib><creatorcontrib>Nijman, Hans W</creatorcontrib><creatorcontrib>Koelzer, Viktor H</creatorcontrib><creatorcontrib>Church, David N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer immunology research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horeweg, Nanda</au><au>de Bruyn, Marco</au><au>Nout, Remi A</au><au>Stelloo, Ellen</au><au>Kedziersza, Katarzyna</au><au>León-Castillo, Alicia</au><au>Plat, Annechien</au><au>Mertz, Kirsten D</au><au>Osse, Michelle</au><au>Jürgenliemk-Schulz, Ina M</au><au>Lutgens, Ludy C H W</au><au>Jobsen, Jan J</au><au>van der Steen-Banasik, Elzbieta M</au><au>Smit, Vincent T</au><au>Creutzberg, Carien L</au><au>Bosse, Tjalling</au><au>Nijman, Hans W</au><au>Koelzer, Viktor H</au><au>Church, David N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prognostic Integrated Image-Based Immune and Molecular Profiling in Early-Stage Endometrial Cancer</atitle><jtitle>Cancer immunology research</jtitle><addtitle>Cancer Immunol Res</addtitle><date>2020-12</date><risdate>2020</risdate><volume>8</volume><issue>12</issue><spage>1508</spage><epage>1519</epage><pages>1508-1519</pages><issn>2326-6066</issn><eissn>2326-6074</eissn><abstract>Optimum risk stratification in early-stage endometrial cancer combines clinicopathologic factors and the molecular endometrial cancer classification defined by The Cancer Genome Atlas (TCGA). It is unclear whether analysis of intratumoral immune infiltrate improves this. We developed a machine-learning, image-based algorithm to quantify density of CD8 and CD103 immune cells in tumor epithelium and stroma in 695 stage I endometrioid endometrial cancers from the PORTEC-1 and -2 trials. The relationship between immune cell density and clinicopathologic/molecular factors was analyzed by hierarchical clustering and multiple regression. The prognostic value of immune infiltrate by cell type and location was analyzed by univariable and multivariable Cox regression, incorporating the molecular endometrial cancer classification. Tumor-infiltrating immune cell density varied substantially between cases, and more modestly by immune cell type and location. Clustering revealed three groups with high, intermediate, and low densities, with highly significant variation in the proportion of molecular endometrial cancer subgroups between them. Univariable analysis revealed intraepithelial CD8 cell density as the strongest predictor of endometrial cancer recurrence; multivariable analysis confirmed this was independent of pathologic factors and molecular subgroup. Exploratory analysis suggested this association was not uniform across molecular subgroups, but greatest in tumors with mutant p53 and absent in DNA mismatch repair-deficient cancers. Thus, this work identified that quantification of intraepithelial CD8 cells improved upon the prognostic utility of the molecular endometrial cancer classification in early-stage endometrial cancer.</abstract><cop>United States</cop><pmid>32999003</pmid><doi>10.1158/2326-6066.CIR-20-0149</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8011-2982</orcidid><orcidid>https://orcid.org/0000-0002-4617-962X</orcidid><orcidid>https://orcid.org/0000-0002-1403-563X</orcidid><orcidid>https://orcid.org/0000-0002-8581-4753</orcidid><orcidid>https://orcid.org/0000-0001-9206-4885</orcidid><orcidid>https://orcid.org/0000-0003-0873-5362</orcidid><orcidid>https://orcid.org/0000-0002-7008-4321</orcidid><orcidid>https://orcid.org/0000-0002-3074-6925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2326-6066
ispartof Cancer immunology research, 2020-12, Vol.8 (12), p.1508-1519
issn 2326-6066
2326-6074
language eng
recordid cdi_proquest_miscellaneous_2447839491
source MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals
subjects Aged
Aged, 80 and over
Antigens, CD - immunology
Biomarkers, Tumor
CD8-Positive T-Lymphocytes - immunology
DNA Mismatch Repair
Endometrial Neoplasms - genetics
Endometrial Neoplasms - immunology
Female
Humans
Integrin alpha Chains - immunology
Linear Models
Middle Aged
Multivariate Analysis
Mutation
Neoplasm Staging
Prognosis
Tumor Suppressor Protein p53 - genetics
title Prognostic Integrated Image-Based Immune and Molecular Profiling in Early-Stage Endometrial Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prognostic%20Integrated%20Image-Based%20Immune%20and%20Molecular%20Profiling%20in%20Early-Stage%20Endometrial%20Cancer&rft.jtitle=Cancer%20immunology%20research&rft.au=Horeweg,%20Nanda&rft.date=2020-12&rft.volume=8&rft.issue=12&rft.spage=1508&rft.epage=1519&rft.pages=1508-1519&rft.issn=2326-6066&rft.eissn=2326-6074&rft_id=info:doi/10.1158/2326-6066.CIR-20-0149&rft_dat=%3Cproquest_cross%3E2447839491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447839491&rft_id=info:pmid/32999003&rfr_iscdi=true