Forecast UTI: application for predicting intensive care unit beds in the context of the COVID-19 pandemic

In view of the need to manage and forecast the number of Intensive Care Unit (ICU) beds for critically ill COVID-19 patients, the Forecast UTI open access application was developed to enable hospital indicator monitoring based on past health data and the temporal dynamics of the Coronavirus epidemic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Epidemiologia e serviços de saúde 2020, Vol.29 (4), p.e2020391-e2020391
Hauptverfasser: Salles Neto, Luiz Leduíno de, Martins, Camila Bertini, Chaves, Antônio Augusto, Konstantyner, Thais Cláudia Roma de Oliveira, Yanasse, Horacio Hideki, Campos, Claudia Barbosa Ladeira de, Bellini, Ana Júlia de Oliveira, Butkeraites, Renan Brito, Correia, Leonardo, Magro, Igor Luciano, Soares, Fernando Dos Santos
Format: Artikel
Sprache:eng ; por
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2020391
container_issue 4
container_start_page e2020391
container_title Epidemiologia e serviços de saúde
container_volume 29
creator Salles Neto, Luiz Leduíno de
Martins, Camila Bertini
Chaves, Antônio Augusto
Konstantyner, Thais Cláudia Roma de Oliveira
Yanasse, Horacio Hideki
Campos, Claudia Barbosa Ladeira de
Bellini, Ana Júlia de Oliveira
Butkeraites, Renan Brito
Correia, Leonardo
Magro, Igor Luciano
Soares, Fernando Dos Santos
description In view of the need to manage and forecast the number of Intensive Care Unit (ICU) beds for critically ill COVID-19 patients, the Forecast UTI open access application was developed to enable hospital indicator monitoring based on past health data and the temporal dynamics of the Coronavirus epidemic. Forecast UTI also enables short-term forecasts of the number of beds occupied daily by COVID-19 patients and possible care scenarios to be established. This article presents the functions, mode of access and examples of uses of Forecast UTI, a computational tool intended to assist managers of public and private hospitals within the Brazilian National Health System by supporting quick, strategic and efficient decision-making.
doi_str_mv 10.1590/S1679-49742020000400023
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2447542619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447542619</sourcerecordid><originalsourceid>FETCH-LOGICAL-p126t-64e74a011b36925a23d8c5353a39c209db461ceb40bdc08ecfb71cdec2b850ab3</originalsourceid><addsrcrecordid>eNo1kEtPwzAQhC0kRCvoXwAfuQTstWPH3FChUKlSD7RcI78CRnkROwj-PQHKSqPVzHzawyJ0QckVzRW5fqJCqowryYEAmYZPAnaE5gBMZkoAzNAixrefLueSAj1BMwZKSSKKOQqrbvBWx4T3u_UN1n1fB6tT6FpcdQPuB--CTaF9waFNvo3hw2OrB4_HNiRsvItTgdPrlHYT8JlwV_3a5fZ5fZdRhXvdOt8Ee4aOK11HvzjsU7Rf3e-Wj9lm-7Be3m6ynoJImeBeck0oNUwoyDUwV9ic5UwzZYEoZ7ig1htOjLOk8LYyklrnLZgiJ9qwU3T5d7cfuvfRx1Q2IVpf17r13RhL4FzmHARVE3p-QEfTeFf2Q2j08FX-v4d9AzEjZxE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447542619</pqid></control><display><type>article</type><title>Forecast UTI: application for predicting intensive care unit beds in the context of the COVID-19 pandemic</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Salles Neto, Luiz Leduíno de ; Martins, Camila Bertini ; Chaves, Antônio Augusto ; Konstantyner, Thais Cláudia Roma de Oliveira ; Yanasse, Horacio Hideki ; Campos, Claudia Barbosa Ladeira de ; Bellini, Ana Júlia de Oliveira ; Butkeraites, Renan Brito ; Correia, Leonardo ; Magro, Igor Luciano ; Soares, Fernando Dos Santos</creator><creatorcontrib>Salles Neto, Luiz Leduíno de ; Martins, Camila Bertini ; Chaves, Antônio Augusto ; Konstantyner, Thais Cláudia Roma de Oliveira ; Yanasse, Horacio Hideki ; Campos, Claudia Barbosa Ladeira de ; Bellini, Ana Júlia de Oliveira ; Butkeraites, Renan Brito ; Correia, Leonardo ; Magro, Igor Luciano ; Soares, Fernando Dos Santos</creatorcontrib><description>In view of the need to manage and forecast the number of Intensive Care Unit (ICU) beds for critically ill COVID-19 patients, the Forecast UTI open access application was developed to enable hospital indicator monitoring based on past health data and the temporal dynamics of the Coronavirus epidemic. Forecast UTI also enables short-term forecasts of the number of beds occupied daily by COVID-19 patients and possible care scenarios to be established. This article presents the functions, mode of access and examples of uses of Forecast UTI, a computational tool intended to assist managers of public and private hospitals within the Brazilian National Health System by supporting quick, strategic and efficient decision-making.</description><identifier>EISSN: 2237-9622</identifier><identifier>DOI: 10.1590/S1679-49742020000400023</identifier><identifier>PMID: 32997068</identifier><language>eng ; por</language><publisher>Brazil</publisher><subject>Bed Occupancy - statistics &amp; numerical data ; Beds - supply &amp; distribution ; Betacoronavirus ; Brazil - epidemiology ; Coronavirus Infections - epidemiology ; COVID-19 ; Decision Making ; Forecasting ; Hospital Bed Capacity - statistics &amp; numerical data ; Humans ; Intensive Care Units - statistics &amp; numerical data ; Pandemics ; Pneumonia, Viral - epidemiology ; SARS-CoV-2 ; Software ; Software Design</subject><ispartof>Epidemiologia e serviços de saúde, 2020, Vol.29 (4), p.e2020391-e2020391</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8938-5370 ; 0000-0002-8252-8815 ; 0000-0002-5830-0466 ; 0000-0002-2289-1866 ; 0000-0002-6946-9670 ; 0000-0002-1460-4169 ; 0000-0002-7091-0435 ; 0000-0002-1836-0915 ; 0000-0003-4671-5290 ; 0000-0002-2773-2696 ; 0000-0001-5767-6798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32997068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salles Neto, Luiz Leduíno de</creatorcontrib><creatorcontrib>Martins, Camila Bertini</creatorcontrib><creatorcontrib>Chaves, Antônio Augusto</creatorcontrib><creatorcontrib>Konstantyner, Thais Cláudia Roma de Oliveira</creatorcontrib><creatorcontrib>Yanasse, Horacio Hideki</creatorcontrib><creatorcontrib>Campos, Claudia Barbosa Ladeira de</creatorcontrib><creatorcontrib>Bellini, Ana Júlia de Oliveira</creatorcontrib><creatorcontrib>Butkeraites, Renan Brito</creatorcontrib><creatorcontrib>Correia, Leonardo</creatorcontrib><creatorcontrib>Magro, Igor Luciano</creatorcontrib><creatorcontrib>Soares, Fernando Dos Santos</creatorcontrib><title>Forecast UTI: application for predicting intensive care unit beds in the context of the COVID-19 pandemic</title><title>Epidemiologia e serviços de saúde</title><addtitle>Epidemiol Serv Saude</addtitle><description>In view of the need to manage and forecast the number of Intensive Care Unit (ICU) beds for critically ill COVID-19 patients, the Forecast UTI open access application was developed to enable hospital indicator monitoring based on past health data and the temporal dynamics of the Coronavirus epidemic. Forecast UTI also enables short-term forecasts of the number of beds occupied daily by COVID-19 patients and possible care scenarios to be established. This article presents the functions, mode of access and examples of uses of Forecast UTI, a computational tool intended to assist managers of public and private hospitals within the Brazilian National Health System by supporting quick, strategic and efficient decision-making.</description><subject>Bed Occupancy - statistics &amp; numerical data</subject><subject>Beds - supply &amp; distribution</subject><subject>Betacoronavirus</subject><subject>Brazil - epidemiology</subject><subject>Coronavirus Infections - epidemiology</subject><subject>COVID-19</subject><subject>Decision Making</subject><subject>Forecasting</subject><subject>Hospital Bed Capacity - statistics &amp; numerical data</subject><subject>Humans</subject><subject>Intensive Care Units - statistics &amp; numerical data</subject><subject>Pandemics</subject><subject>Pneumonia, Viral - epidemiology</subject><subject>SARS-CoV-2</subject><subject>Software</subject><subject>Software Design</subject><issn>2237-9622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kEtPwzAQhC0kRCvoXwAfuQTstWPH3FChUKlSD7RcI78CRnkROwj-PQHKSqPVzHzawyJ0QckVzRW5fqJCqowryYEAmYZPAnaE5gBMZkoAzNAixrefLueSAj1BMwZKSSKKOQqrbvBWx4T3u_UN1n1fB6tT6FpcdQPuB--CTaF9waFNvo3hw2OrB4_HNiRsvItTgdPrlHYT8JlwV_3a5fZ5fZdRhXvdOt8Ee4aOK11HvzjsU7Rf3e-Wj9lm-7Be3m6ynoJImeBeck0oNUwoyDUwV9ic5UwzZYEoZ7ig1htOjLOk8LYyklrnLZgiJ9qwU3T5d7cfuvfRx1Q2IVpf17r13RhL4FzmHARVE3p-QEfTeFf2Q2j08FX-v4d9AzEjZxE</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Salles Neto, Luiz Leduíno de</creator><creator>Martins, Camila Bertini</creator><creator>Chaves, Antônio Augusto</creator><creator>Konstantyner, Thais Cláudia Roma de Oliveira</creator><creator>Yanasse, Horacio Hideki</creator><creator>Campos, Claudia Barbosa Ladeira de</creator><creator>Bellini, Ana Júlia de Oliveira</creator><creator>Butkeraites, Renan Brito</creator><creator>Correia, Leonardo</creator><creator>Magro, Igor Luciano</creator><creator>Soares, Fernando Dos Santos</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8938-5370</orcidid><orcidid>https://orcid.org/0000-0002-8252-8815</orcidid><orcidid>https://orcid.org/0000-0002-5830-0466</orcidid><orcidid>https://orcid.org/0000-0002-2289-1866</orcidid><orcidid>https://orcid.org/0000-0002-6946-9670</orcidid><orcidid>https://orcid.org/0000-0002-1460-4169</orcidid><orcidid>https://orcid.org/0000-0002-7091-0435</orcidid><orcidid>https://orcid.org/0000-0002-1836-0915</orcidid><orcidid>https://orcid.org/0000-0003-4671-5290</orcidid><orcidid>https://orcid.org/0000-0002-2773-2696</orcidid><orcidid>https://orcid.org/0000-0001-5767-6798</orcidid></search><sort><creationdate>2020</creationdate><title>Forecast UTI: application for predicting intensive care unit beds in the context of the COVID-19 pandemic</title><author>Salles Neto, Luiz Leduíno de ; Martins, Camila Bertini ; Chaves, Antônio Augusto ; Konstantyner, Thais Cláudia Roma de Oliveira ; Yanasse, Horacio Hideki ; Campos, Claudia Barbosa Ladeira de ; Bellini, Ana Júlia de Oliveira ; Butkeraites, Renan Brito ; Correia, Leonardo ; Magro, Igor Luciano ; Soares, Fernando Dos Santos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p126t-64e74a011b36925a23d8c5353a39c209db461ceb40bdc08ecfb71cdec2b850ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; por</language><creationdate>2020</creationdate><topic>Bed Occupancy - statistics &amp; numerical data</topic><topic>Beds - supply &amp; distribution</topic><topic>Betacoronavirus</topic><topic>Brazil - epidemiology</topic><topic>Coronavirus Infections - epidemiology</topic><topic>COVID-19</topic><topic>Decision Making</topic><topic>Forecasting</topic><topic>Hospital Bed Capacity - statistics &amp; numerical data</topic><topic>Humans</topic><topic>Intensive Care Units - statistics &amp; numerical data</topic><topic>Pandemics</topic><topic>Pneumonia, Viral - epidemiology</topic><topic>SARS-CoV-2</topic><topic>Software</topic><topic>Software Design</topic><toplevel>online_resources</toplevel><creatorcontrib>Salles Neto, Luiz Leduíno de</creatorcontrib><creatorcontrib>Martins, Camila Bertini</creatorcontrib><creatorcontrib>Chaves, Antônio Augusto</creatorcontrib><creatorcontrib>Konstantyner, Thais Cláudia Roma de Oliveira</creatorcontrib><creatorcontrib>Yanasse, Horacio Hideki</creatorcontrib><creatorcontrib>Campos, Claudia Barbosa Ladeira de</creatorcontrib><creatorcontrib>Bellini, Ana Júlia de Oliveira</creatorcontrib><creatorcontrib>Butkeraites, Renan Brito</creatorcontrib><creatorcontrib>Correia, Leonardo</creatorcontrib><creatorcontrib>Magro, Igor Luciano</creatorcontrib><creatorcontrib>Soares, Fernando Dos Santos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Epidemiologia e serviços de saúde</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salles Neto, Luiz Leduíno de</au><au>Martins, Camila Bertini</au><au>Chaves, Antônio Augusto</au><au>Konstantyner, Thais Cláudia Roma de Oliveira</au><au>Yanasse, Horacio Hideki</au><au>Campos, Claudia Barbosa Ladeira de</au><au>Bellini, Ana Júlia de Oliveira</au><au>Butkeraites, Renan Brito</au><au>Correia, Leonardo</au><au>Magro, Igor Luciano</au><au>Soares, Fernando Dos Santos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecast UTI: application for predicting intensive care unit beds in the context of the COVID-19 pandemic</atitle><jtitle>Epidemiologia e serviços de saúde</jtitle><addtitle>Epidemiol Serv Saude</addtitle><date>2020</date><risdate>2020</risdate><volume>29</volume><issue>4</issue><spage>e2020391</spage><epage>e2020391</epage><pages>e2020391-e2020391</pages><eissn>2237-9622</eissn><abstract>In view of the need to manage and forecast the number of Intensive Care Unit (ICU) beds for critically ill COVID-19 patients, the Forecast UTI open access application was developed to enable hospital indicator monitoring based on past health data and the temporal dynamics of the Coronavirus epidemic. Forecast UTI also enables short-term forecasts of the number of beds occupied daily by COVID-19 patients and possible care scenarios to be established. This article presents the functions, mode of access and examples of uses of Forecast UTI, a computational tool intended to assist managers of public and private hospitals within the Brazilian National Health System by supporting quick, strategic and efficient decision-making.</abstract><cop>Brazil</cop><pmid>32997068</pmid><doi>10.1590/S1679-49742020000400023</doi><orcidid>https://orcid.org/0000-0001-8938-5370</orcidid><orcidid>https://orcid.org/0000-0002-8252-8815</orcidid><orcidid>https://orcid.org/0000-0002-5830-0466</orcidid><orcidid>https://orcid.org/0000-0002-2289-1866</orcidid><orcidid>https://orcid.org/0000-0002-6946-9670</orcidid><orcidid>https://orcid.org/0000-0002-1460-4169</orcidid><orcidid>https://orcid.org/0000-0002-7091-0435</orcidid><orcidid>https://orcid.org/0000-0002-1836-0915</orcidid><orcidid>https://orcid.org/0000-0003-4671-5290</orcidid><orcidid>https://orcid.org/0000-0002-2773-2696</orcidid><orcidid>https://orcid.org/0000-0001-5767-6798</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2237-9622
ispartof Epidemiologia e serviços de saúde, 2020, Vol.29 (4), p.e2020391-e2020391
issn 2237-9622
language eng ; por
recordid cdi_proquest_miscellaneous_2447542619
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Bed Occupancy - statistics & numerical data
Beds - supply & distribution
Betacoronavirus
Brazil - epidemiology
Coronavirus Infections - epidemiology
COVID-19
Decision Making
Forecasting
Hospital Bed Capacity - statistics & numerical data
Humans
Intensive Care Units - statistics & numerical data
Pandemics
Pneumonia, Viral - epidemiology
SARS-CoV-2
Software
Software Design
title Forecast UTI: application for predicting intensive care unit beds in the context of the COVID-19 pandemic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecast%20UTI:%20application%20for%20predicting%20intensive%20care%20unit%20beds%20in%20the%20context%20of%20the%20COVID-19%20pandemic&rft.jtitle=Epidemiologia%20e%20servi%C3%A7os%20de%20sa%C3%BAde&rft.au=Salles%20Neto,%20Luiz%20Ledu%C3%ADno%20de&rft.date=2020&rft.volume=29&rft.issue=4&rft.spage=e2020391&rft.epage=e2020391&rft.pages=e2020391-e2020391&rft.eissn=2237-9622&rft_id=info:doi/10.1590/S1679-49742020000400023&rft_dat=%3Cproquest_pubme%3E2447542619%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447542619&rft_id=info:pmid/32997068&rfr_iscdi=true