Pro-osteogenic Effects of WNT in a Mouse Model of Bone Formation Around Femoral Implants

Wnt signaling maintains homeostasis in the bone marrow cavity: if Wnt signaling is inhibited then bone volume and density would decline. In this study, we identified a population of Wnt-responsive cells as osteoprogenitor in the intact trabecular bone region, which were responsible for bone developm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calcified tissue international 2021-02, Vol.108 (2), p.240-251
Hauptverfasser: Li, Zhijun, Yuan, Xue, Arioka, Masaki, Bahat, Daniel, Sun, Qiang, Chen, Jinlong, Helms, Jill A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue 2
container_start_page 240
container_title Calcified tissue international
container_volume 108
creator Li, Zhijun
Yuan, Xue
Arioka, Masaki
Bahat, Daniel
Sun, Qiang
Chen, Jinlong
Helms, Jill A.
description Wnt signaling maintains homeostasis in the bone marrow cavity: if Wnt signaling is inhibited then bone volume and density would decline. In this study, we identified a population of Wnt-responsive cells as osteoprogenitor in the intact trabecular bone region, which were responsible for bone development and turnover. If an implant was placed into the long bone, this Wnt-responsive population and their progeny contributed to osseointegration. We employed Axin2Cre CreERT2/ +; R26 mTmG/ + transgenic mouse strain in which Axin2-positive, Wnt-responsive cells, and their progeny are permanently labeled by GFP upon exposure to tamoxifen. Each mouse received femoral implants placed into a site prepared solely by drilling, and a single-dose liposomal WNT3A protein was used in the treatment group. A lineage tracing strategy design allowed us to identify cells actively expressing Axin2 in response to Wnt signaling pathway. These tools demonstrated that Wnt-responsive cells and their progeny comprise a quiescent population residing in the trabecular region. In response to an implant placed, this population becomes mitotically active: cells migrated into the peri-implant region, up-regulated the expression of osteogenic proteins. Ultimately, those cells gave rise to osteoblasts that produced significantly more new bone in the peri-implant region. Wnt-responsive cells directly contributed to implant osseointegration. Using a liposomal WNT3A protein therapeutic, we showed that a single application at the time of implant placed was sufficient to accelerate osseointegration. The Wnt-responsive cell population in trabecular bone, activated by injury, ultimately contributes to implant osseointegration. Liposomal WNT3A protein therapeutic accelerates implant osseointegration in the long bone.
doi_str_mv 10.1007/s00223-020-00757-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2447310324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479578891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-b0e710259b58f5ca8ab5e53ffafb7ee20b910adb83de7954bc23ddc90733036b3</originalsourceid><addsrcrecordid>eNp9kEFPHCEYhonR6Gr7BzwYEi-9UD9gGGaOW-NWk9X2YNO9EZj5MLOZGbYwc_DfF7takx56gQDP9_LmIeScw2cOoK8SgBCSgQCWj0ozdUAWvJCCQSX0IVkA15zVpd6ckNOUtgC8KMvymJxIUdegS7Ugm-8xsJAmDE84dg298R6bKdHg6c-HR9qN1NL7MCfMa4v9y_2XMCJdhTjYqQsjXcYwjy1d4RCi7endsOvtOKUP5MjbPuHH1_2M_FjdPF7fsvW3r3fXyzVrpFYTc4Cag1C1U5VXja2sU6ik99Y7jSjA1Rxs6yrZoq5V4Roh27bJ7aUEWTp5Rj7tc3cx_JoxTWboUoN9LoG5txFFoSUHKYqMXv6DbsMcx9wuUzlcV1XNMyX2VBNDShG92cVusPHZcDAv3s3eu8nezR_vRuWhi9fo2Q3Y_h15E50BuQdSfhqfML7__Z_Y3_BZjHE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479578891</pqid></control><display><type>article</type><title>Pro-osteogenic Effects of WNT in a Mouse Model of Bone Formation Around Femoral Implants</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Zhijun ; Yuan, Xue ; Arioka, Masaki ; Bahat, Daniel ; Sun, Qiang ; Chen, Jinlong ; Helms, Jill A.</creator><creatorcontrib>Li, Zhijun ; Yuan, Xue ; Arioka, Masaki ; Bahat, Daniel ; Sun, Qiang ; Chen, Jinlong ; Helms, Jill A.</creatorcontrib><description>Wnt signaling maintains homeostasis in the bone marrow cavity: if Wnt signaling is inhibited then bone volume and density would decline. In this study, we identified a population of Wnt-responsive cells as osteoprogenitor in the intact trabecular bone region, which were responsible for bone development and turnover. If an implant was placed into the long bone, this Wnt-responsive population and their progeny contributed to osseointegration. We employed Axin2Cre CreERT2/ +; R26 mTmG/ + transgenic mouse strain in which Axin2-positive, Wnt-responsive cells, and their progeny are permanently labeled by GFP upon exposure to tamoxifen. Each mouse received femoral implants placed into a site prepared solely by drilling, and a single-dose liposomal WNT3A protein was used in the treatment group. A lineage tracing strategy design allowed us to identify cells actively expressing Axin2 in response to Wnt signaling pathway. These tools demonstrated that Wnt-responsive cells and their progeny comprise a quiescent population residing in the trabecular region. In response to an implant placed, this population becomes mitotically active: cells migrated into the peri-implant region, up-regulated the expression of osteogenic proteins. Ultimately, those cells gave rise to osteoblasts that produced significantly more new bone in the peri-implant region. Wnt-responsive cells directly contributed to implant osseointegration. Using a liposomal WNT3A protein therapeutic, we showed that a single application at the time of implant placed was sufficient to accelerate osseointegration. The Wnt-responsive cell population in trabecular bone, activated by injury, ultimately contributes to implant osseointegration. Liposomal WNT3A protein therapeutic accelerates implant osseointegration in the long bone.</description><identifier>ISSN: 0171-967X</identifier><identifier>EISSN: 1432-0827</identifier><identifier>DOI: 10.1007/s00223-020-00757-5</identifier><identifier>PMID: 32990765</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Biochemistry ; Biomedical and Life Sciences ; Bone density ; Bone growth ; Bone implants ; Bone marrow ; Bone turnover ; Bone-Implant Interface ; Cancellous bone ; Cell Biology ; Endocrinology ; Femur ; Homeostasis ; Life Sciences ; Long bone ; Mice ; Offspring ; Original Research ; Orthopedics ; Osseointegration ; Osteoblasts ; Osteogenesis ; Osteoprogenitor cells ; Population ; Population studies ; Prostheses and Implants ; Proteins ; Signal transduction ; Tamoxifen ; Transgenic mice ; Transplants &amp; implants ; Wnt protein ; Wnt Signaling Pathway ; Wnt3A Protein - therapeutic use</subject><ispartof>Calcified tissue international, 2021-02, Vol.108 (2), p.240-251</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-b0e710259b58f5ca8ab5e53ffafb7ee20b910adb83de7954bc23ddc90733036b3</citedby><cites>FETCH-LOGICAL-c375t-b0e710259b58f5ca8ab5e53ffafb7ee20b910adb83de7954bc23ddc90733036b3</cites><orcidid>0000-0002-0463-396X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00223-020-00757-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00223-020-00757-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32990765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhijun</creatorcontrib><creatorcontrib>Yuan, Xue</creatorcontrib><creatorcontrib>Arioka, Masaki</creatorcontrib><creatorcontrib>Bahat, Daniel</creatorcontrib><creatorcontrib>Sun, Qiang</creatorcontrib><creatorcontrib>Chen, Jinlong</creatorcontrib><creatorcontrib>Helms, Jill A.</creatorcontrib><title>Pro-osteogenic Effects of WNT in a Mouse Model of Bone Formation Around Femoral Implants</title><title>Calcified tissue international</title><addtitle>Calcif Tissue Int</addtitle><addtitle>Calcif Tissue Int</addtitle><description>Wnt signaling maintains homeostasis in the bone marrow cavity: if Wnt signaling is inhibited then bone volume and density would decline. In this study, we identified a population of Wnt-responsive cells as osteoprogenitor in the intact trabecular bone region, which were responsible for bone development and turnover. If an implant was placed into the long bone, this Wnt-responsive population and their progeny contributed to osseointegration. We employed Axin2Cre CreERT2/ +; R26 mTmG/ + transgenic mouse strain in which Axin2-positive, Wnt-responsive cells, and their progeny are permanently labeled by GFP upon exposure to tamoxifen. Each mouse received femoral implants placed into a site prepared solely by drilling, and a single-dose liposomal WNT3A protein was used in the treatment group. A lineage tracing strategy design allowed us to identify cells actively expressing Axin2 in response to Wnt signaling pathway. These tools demonstrated that Wnt-responsive cells and their progeny comprise a quiescent population residing in the trabecular region. In response to an implant placed, this population becomes mitotically active: cells migrated into the peri-implant region, up-regulated the expression of osteogenic proteins. Ultimately, those cells gave rise to osteoblasts that produced significantly more new bone in the peri-implant region. Wnt-responsive cells directly contributed to implant osseointegration. Using a liposomal WNT3A protein therapeutic, we showed that a single application at the time of implant placed was sufficient to accelerate osseointegration. The Wnt-responsive cell population in trabecular bone, activated by injury, ultimately contributes to implant osseointegration. Liposomal WNT3A protein therapeutic accelerates implant osseointegration in the long bone.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Bone density</subject><subject>Bone growth</subject><subject>Bone implants</subject><subject>Bone marrow</subject><subject>Bone turnover</subject><subject>Bone-Implant Interface</subject><subject>Cancellous bone</subject><subject>Cell Biology</subject><subject>Endocrinology</subject><subject>Femur</subject><subject>Homeostasis</subject><subject>Life Sciences</subject><subject>Long bone</subject><subject>Mice</subject><subject>Offspring</subject><subject>Original Research</subject><subject>Orthopedics</subject><subject>Osseointegration</subject><subject>Osteoblasts</subject><subject>Osteogenesis</subject><subject>Osteoprogenitor cells</subject><subject>Population</subject><subject>Population studies</subject><subject>Prostheses and Implants</subject><subject>Proteins</subject><subject>Signal transduction</subject><subject>Tamoxifen</subject><subject>Transgenic mice</subject><subject>Transplants &amp; implants</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway</subject><subject>Wnt3A Protein - therapeutic use</subject><issn>0171-967X</issn><issn>1432-0827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFPHCEYhonR6Gr7BzwYEi-9UD9gGGaOW-NWk9X2YNO9EZj5MLOZGbYwc_DfF7takx56gQDP9_LmIeScw2cOoK8SgBCSgQCWj0ozdUAWvJCCQSX0IVkA15zVpd6ckNOUtgC8KMvymJxIUdegS7Ugm-8xsJAmDE84dg298R6bKdHg6c-HR9qN1NL7MCfMa4v9y_2XMCJdhTjYqQsjXcYwjy1d4RCi7endsOvtOKUP5MjbPuHH1_2M_FjdPF7fsvW3r3fXyzVrpFYTc4Cag1C1U5VXja2sU6ik99Y7jSjA1Rxs6yrZoq5V4Roh27bJ7aUEWTp5Rj7tc3cx_JoxTWboUoN9LoG5txFFoSUHKYqMXv6DbsMcx9wuUzlcV1XNMyX2VBNDShG92cVusPHZcDAv3s3eu8nezR_vRuWhi9fo2Q3Y_h15E50BuQdSfhqfML7__Z_Y3_BZjHE</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Li, Zhijun</creator><creator>Yuan, Xue</creator><creator>Arioka, Masaki</creator><creator>Bahat, Daniel</creator><creator>Sun, Qiang</creator><creator>Chen, Jinlong</creator><creator>Helms, Jill A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0463-396X</orcidid></search><sort><creationdate>20210201</creationdate><title>Pro-osteogenic Effects of WNT in a Mouse Model of Bone Formation Around Femoral Implants</title><author>Li, Zhijun ; Yuan, Xue ; Arioka, Masaki ; Bahat, Daniel ; Sun, Qiang ; Chen, Jinlong ; Helms, Jill A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-b0e710259b58f5ca8ab5e53ffafb7ee20b910adb83de7954bc23ddc90733036b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Bone density</topic><topic>Bone growth</topic><topic>Bone implants</topic><topic>Bone marrow</topic><topic>Bone turnover</topic><topic>Bone-Implant Interface</topic><topic>Cancellous bone</topic><topic>Cell Biology</topic><topic>Endocrinology</topic><topic>Femur</topic><topic>Homeostasis</topic><topic>Life Sciences</topic><topic>Long bone</topic><topic>Mice</topic><topic>Offspring</topic><topic>Original Research</topic><topic>Orthopedics</topic><topic>Osseointegration</topic><topic>Osteoblasts</topic><topic>Osteogenesis</topic><topic>Osteoprogenitor cells</topic><topic>Population</topic><topic>Population studies</topic><topic>Prostheses and Implants</topic><topic>Proteins</topic><topic>Signal transduction</topic><topic>Tamoxifen</topic><topic>Transgenic mice</topic><topic>Transplants &amp; implants</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway</topic><topic>Wnt3A Protein - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhijun</creatorcontrib><creatorcontrib>Yuan, Xue</creatorcontrib><creatorcontrib>Arioka, Masaki</creatorcontrib><creatorcontrib>Bahat, Daniel</creatorcontrib><creatorcontrib>Sun, Qiang</creatorcontrib><creatorcontrib>Chen, Jinlong</creatorcontrib><creatorcontrib>Helms, Jill A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Calcified tissue international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhijun</au><au>Yuan, Xue</au><au>Arioka, Masaki</au><au>Bahat, Daniel</au><au>Sun, Qiang</au><au>Chen, Jinlong</au><au>Helms, Jill A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pro-osteogenic Effects of WNT in a Mouse Model of Bone Formation Around Femoral Implants</atitle><jtitle>Calcified tissue international</jtitle><stitle>Calcif Tissue Int</stitle><addtitle>Calcif Tissue Int</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>108</volume><issue>2</issue><spage>240</spage><epage>251</epage><pages>240-251</pages><issn>0171-967X</issn><eissn>1432-0827</eissn><abstract>Wnt signaling maintains homeostasis in the bone marrow cavity: if Wnt signaling is inhibited then bone volume and density would decline. In this study, we identified a population of Wnt-responsive cells as osteoprogenitor in the intact trabecular bone region, which were responsible for bone development and turnover. If an implant was placed into the long bone, this Wnt-responsive population and their progeny contributed to osseointegration. We employed Axin2Cre CreERT2/ +; R26 mTmG/ + transgenic mouse strain in which Axin2-positive, Wnt-responsive cells, and their progeny are permanently labeled by GFP upon exposure to tamoxifen. Each mouse received femoral implants placed into a site prepared solely by drilling, and a single-dose liposomal WNT3A protein was used in the treatment group. A lineage tracing strategy design allowed us to identify cells actively expressing Axin2 in response to Wnt signaling pathway. These tools demonstrated that Wnt-responsive cells and their progeny comprise a quiescent population residing in the trabecular region. In response to an implant placed, this population becomes mitotically active: cells migrated into the peri-implant region, up-regulated the expression of osteogenic proteins. Ultimately, those cells gave rise to osteoblasts that produced significantly more new bone in the peri-implant region. Wnt-responsive cells directly contributed to implant osseointegration. Using a liposomal WNT3A protein therapeutic, we showed that a single application at the time of implant placed was sufficient to accelerate osseointegration. The Wnt-responsive cell population in trabecular bone, activated by injury, ultimately contributes to implant osseointegration. Liposomal WNT3A protein therapeutic accelerates implant osseointegration in the long bone.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32990765</pmid><doi>10.1007/s00223-020-00757-5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0463-396X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0171-967X
ispartof Calcified tissue international, 2021-02, Vol.108 (2), p.240-251
issn 0171-967X
1432-0827
language eng
recordid cdi_proquest_miscellaneous_2447310324
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Biochemistry
Biomedical and Life Sciences
Bone density
Bone growth
Bone implants
Bone marrow
Bone turnover
Bone-Implant Interface
Cancellous bone
Cell Biology
Endocrinology
Femur
Homeostasis
Life Sciences
Long bone
Mice
Offspring
Original Research
Orthopedics
Osseointegration
Osteoblasts
Osteogenesis
Osteoprogenitor cells
Population
Population studies
Prostheses and Implants
Proteins
Signal transduction
Tamoxifen
Transgenic mice
Transplants & implants
Wnt protein
Wnt Signaling Pathway
Wnt3A Protein - therapeutic use
title Pro-osteogenic Effects of WNT in a Mouse Model of Bone Formation Around Femoral Implants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pro-osteogenic%20Effects%20of%20WNT%20in%20a%20Mouse%20Model%20of%20Bone%20Formation%20Around%20Femoral%20Implants&rft.jtitle=Calcified%20tissue%20international&rft.au=Li,%20Zhijun&rft.date=2021-02-01&rft.volume=108&rft.issue=2&rft.spage=240&rft.epage=251&rft.pages=240-251&rft.issn=0171-967X&rft.eissn=1432-0827&rft_id=info:doi/10.1007/s00223-020-00757-5&rft_dat=%3Cproquest_cross%3E2479578891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479578891&rft_id=info:pmid/32990765&rfr_iscdi=true