Bisubstrate Ether‐Linked Uridine‐Peptide Conjugates as O‐GlcNAc Transferase Inhibitors

The O‐linked β‐N‐acetylglucosamine (O‐GlcNAc) transferase (OGT) is a master regulator of installing O‐GlcNAc onto serine or threonine residues on a multitude of target proteins. Numerous nuclear and cytosolic proteins of varying functional classes, including translational factors, transcription fact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemMedChem 2021-02, Vol.16 (3), p.477-483
Hauptverfasser: Makwana, Vivek, Ryan, Philip, Malde, Alpeshkumar K., Anoopkumar‐Dukie, Shailendra, Rudrawar, Santosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 483
container_issue 3
container_start_page 477
container_title ChemMedChem
container_volume 16
creator Makwana, Vivek
Ryan, Philip
Malde, Alpeshkumar K.
Anoopkumar‐Dukie, Shailendra
Rudrawar, Santosh
description The O‐linked β‐N‐acetylglucosamine (O‐GlcNAc) transferase (OGT) is a master regulator of installing O‐GlcNAc onto serine or threonine residues on a multitude of target proteins. Numerous nuclear and cytosolic proteins of varying functional classes, including translational factors, transcription factors, signaling proteins, and kinases are OGT substrates. Aberrant O‐GlcNAcylation of proteins is implicated in signaling in metabolic diseases such as diabetes and cancer. Selective and potent OGT inhibitors are valuable tools to study the role of OGT in modulating a wide range of effects on cellular functions. We report linear bisubstrate ether‐linked uridine‐peptide conjugates as OGT inhibitors with micromolar affinity. In vitro evaluation of the compounds revealed the importance of donor substrate, linker and acceptor substrate in the rational design of bisubstrate analogue inhibitors. Molecular dynamics simulations shed light on the binding of this novel class of inhibitors and rationalized the effect of amino acid truncation of acceptor peptide on OGT inhibition. Blocking the master regulator: O‐GlcNAcylation is one of the prominent hallmarks of cancer, and O‐GlcNAc transferse (OGT) is solely responsible for this post‐translational modification. The basic design of bisubstrate inhibitors consists of the donor substrate and acceptor substrate analogues tethered via a suitable linker. In this study a linear bisubstrate analogue inhibitor demonstrated significant inhibitory activity against hOGT in vitro at micromolar concentrations.
doi_str_mv 10.1002/cmdc.202000582
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2447309886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447309886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3282-1be4c948741fdd4fa00c272f57974eccf38a555901d3a000c5bac7a9b4653c6b3</originalsourceid><addsrcrecordid>eNqFkLtOxDAQRS0E4t1Sokg0NLuMHXttlxCe0vIooEOKHGcCXrLJYidCdHwC38iXYLSwSDRUM5o5czU6hOxQGFIAdmCnpR0yYAAgFFsi61SNYCCpksuLXuo1shHCBIBzRdUqWUuZ1hQkXyf3Ry70Rei86TA56R7Rf7y9j13zhGVy513pGoyDG5x1rsQka5tJ_xDRkJiQXMfNWW2vDm1y600TKvQmYHLRPLrCda0PW2SlMnXA7e-6Se5OT26z88H4-uwiOxwPbMoUG9ACudVcSU6rsuSVAbBMskpILTlaW6XKCCE00DKNO7CiMFYaXfCRSO2oSDfJ_jx35tvnHkOXT12wWNemwbYPOeNcpqCVGkV07w86aXvfxO8iFXUJ4IJGajinrG9D8FjlM--mxr_mFPIv7_mX93zhPR7sfsf2xRTLBf4jOgJ6Dry4Gl__icuzy-PsN_wTcgKRLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486050451</pqid></control><display><type>article</type><title>Bisubstrate Ether‐Linked Uridine‐Peptide Conjugates as O‐GlcNAc Transferase Inhibitors</title><source>Wiley-Blackwell Journals</source><creator>Makwana, Vivek ; Ryan, Philip ; Malde, Alpeshkumar K. ; Anoopkumar‐Dukie, Shailendra ; Rudrawar, Santosh</creator><creatorcontrib>Makwana, Vivek ; Ryan, Philip ; Malde, Alpeshkumar K. ; Anoopkumar‐Dukie, Shailendra ; Rudrawar, Santosh</creatorcontrib><description>The O‐linked β‐N‐acetylglucosamine (O‐GlcNAc) transferase (OGT) is a master regulator of installing O‐GlcNAc onto serine or threonine residues on a multitude of target proteins. Numerous nuclear and cytosolic proteins of varying functional classes, including translational factors, transcription factors, signaling proteins, and kinases are OGT substrates. Aberrant O‐GlcNAcylation of proteins is implicated in signaling in metabolic diseases such as diabetes and cancer. Selective and potent OGT inhibitors are valuable tools to study the role of OGT in modulating a wide range of effects on cellular functions. We report linear bisubstrate ether‐linked uridine‐peptide conjugates as OGT inhibitors with micromolar affinity. In vitro evaluation of the compounds revealed the importance of donor substrate, linker and acceptor substrate in the rational design of bisubstrate analogue inhibitors. Molecular dynamics simulations shed light on the binding of this novel class of inhibitors and rationalized the effect of amino acid truncation of acceptor peptide on OGT inhibition. Blocking the master regulator: O‐GlcNAcylation is one of the prominent hallmarks of cancer, and O‐GlcNAc transferse (OGT) is solely responsible for this post‐translational modification. The basic design of bisubstrate inhibitors consists of the donor substrate and acceptor substrate analogues tethered via a suitable linker. In this study a linear bisubstrate analogue inhibitor demonstrated significant inhibitory activity against hOGT in vitro at micromolar concentrations.</description><identifier>ISSN: 1860-7179</identifier><identifier>EISSN: 1860-7187</identifier><identifier>DOI: 10.1002/cmdc.202000582</identifier><identifier>PMID: 32991074</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acceptor substrate ; Amino acids ; Bisubstrate inhibitors ; Conjugates ; Diabetes mellitus ; Donor substrate ; Inhibitors ; Kinases ; Metabolic disorders ; Molecular dynamics ; N-Acetylglucosamine ; O-GlcNAcylation ; OGT enzyme ; Peptides ; Post-translational modification ; Proteins ; Serine ; Signaling ; Substrates ; Threonine ; Transcription factors ; Uridine</subject><ispartof>ChemMedChem, 2021-02, Vol.16 (3), p.477-483</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3282-1be4c948741fdd4fa00c272f57974eccf38a555901d3a000c5bac7a9b4653c6b3</citedby><cites>FETCH-LOGICAL-c3282-1be4c948741fdd4fa00c272f57974eccf38a555901d3a000c5bac7a9b4653c6b3</cites><orcidid>0000-0002-4548-6433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcmdc.202000582$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcmdc.202000582$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32991074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Makwana, Vivek</creatorcontrib><creatorcontrib>Ryan, Philip</creatorcontrib><creatorcontrib>Malde, Alpeshkumar K.</creatorcontrib><creatorcontrib>Anoopkumar‐Dukie, Shailendra</creatorcontrib><creatorcontrib>Rudrawar, Santosh</creatorcontrib><title>Bisubstrate Ether‐Linked Uridine‐Peptide Conjugates as O‐GlcNAc Transferase Inhibitors</title><title>ChemMedChem</title><addtitle>ChemMedChem</addtitle><description>The O‐linked β‐N‐acetylglucosamine (O‐GlcNAc) transferase (OGT) is a master regulator of installing O‐GlcNAc onto serine or threonine residues on a multitude of target proteins. Numerous nuclear and cytosolic proteins of varying functional classes, including translational factors, transcription factors, signaling proteins, and kinases are OGT substrates. Aberrant O‐GlcNAcylation of proteins is implicated in signaling in metabolic diseases such as diabetes and cancer. Selective and potent OGT inhibitors are valuable tools to study the role of OGT in modulating a wide range of effects on cellular functions. We report linear bisubstrate ether‐linked uridine‐peptide conjugates as OGT inhibitors with micromolar affinity. In vitro evaluation of the compounds revealed the importance of donor substrate, linker and acceptor substrate in the rational design of bisubstrate analogue inhibitors. Molecular dynamics simulations shed light on the binding of this novel class of inhibitors and rationalized the effect of amino acid truncation of acceptor peptide on OGT inhibition. Blocking the master regulator: O‐GlcNAcylation is one of the prominent hallmarks of cancer, and O‐GlcNAc transferse (OGT) is solely responsible for this post‐translational modification. The basic design of bisubstrate inhibitors consists of the donor substrate and acceptor substrate analogues tethered via a suitable linker. In this study a linear bisubstrate analogue inhibitor demonstrated significant inhibitory activity against hOGT in vitro at micromolar concentrations.</description><subject>Acceptor substrate</subject><subject>Amino acids</subject><subject>Bisubstrate inhibitors</subject><subject>Conjugates</subject><subject>Diabetes mellitus</subject><subject>Donor substrate</subject><subject>Inhibitors</subject><subject>Kinases</subject><subject>Metabolic disorders</subject><subject>Molecular dynamics</subject><subject>N-Acetylglucosamine</subject><subject>O-GlcNAcylation</subject><subject>OGT enzyme</subject><subject>Peptides</subject><subject>Post-translational modification</subject><subject>Proteins</subject><subject>Serine</subject><subject>Signaling</subject><subject>Substrates</subject><subject>Threonine</subject><subject>Transcription factors</subject><subject>Uridine</subject><issn>1860-7179</issn><issn>1860-7187</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOxDAQRS0E4t1Sokg0NLuMHXttlxCe0vIooEOKHGcCXrLJYidCdHwC38iXYLSwSDRUM5o5czU6hOxQGFIAdmCnpR0yYAAgFFsi61SNYCCpksuLXuo1shHCBIBzRdUqWUuZ1hQkXyf3Ry70Rei86TA56R7Rf7y9j13zhGVy513pGoyDG5x1rsQka5tJ_xDRkJiQXMfNWW2vDm1y600TKvQmYHLRPLrCda0PW2SlMnXA7e-6Se5OT26z88H4-uwiOxwPbMoUG9ACudVcSU6rsuSVAbBMskpILTlaW6XKCCE00DKNO7CiMFYaXfCRSO2oSDfJ_jx35tvnHkOXT12wWNemwbYPOeNcpqCVGkV07w86aXvfxO8iFXUJ4IJGajinrG9D8FjlM--mxr_mFPIv7_mX93zhPR7sfsf2xRTLBf4jOgJ6Dry4Gl__icuzy-PsN_wTcgKRLA</recordid><startdate>20210204</startdate><enddate>20210204</enddate><creator>Makwana, Vivek</creator><creator>Ryan, Philip</creator><creator>Malde, Alpeshkumar K.</creator><creator>Anoopkumar‐Dukie, Shailendra</creator><creator>Rudrawar, Santosh</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4548-6433</orcidid></search><sort><creationdate>20210204</creationdate><title>Bisubstrate Ether‐Linked Uridine‐Peptide Conjugates as O‐GlcNAc Transferase Inhibitors</title><author>Makwana, Vivek ; Ryan, Philip ; Malde, Alpeshkumar K. ; Anoopkumar‐Dukie, Shailendra ; Rudrawar, Santosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3282-1be4c948741fdd4fa00c272f57974eccf38a555901d3a000c5bac7a9b4653c6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceptor substrate</topic><topic>Amino acids</topic><topic>Bisubstrate inhibitors</topic><topic>Conjugates</topic><topic>Diabetes mellitus</topic><topic>Donor substrate</topic><topic>Inhibitors</topic><topic>Kinases</topic><topic>Metabolic disorders</topic><topic>Molecular dynamics</topic><topic>N-Acetylglucosamine</topic><topic>O-GlcNAcylation</topic><topic>OGT enzyme</topic><topic>Peptides</topic><topic>Post-translational modification</topic><topic>Proteins</topic><topic>Serine</topic><topic>Signaling</topic><topic>Substrates</topic><topic>Threonine</topic><topic>Transcription factors</topic><topic>Uridine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makwana, Vivek</creatorcontrib><creatorcontrib>Ryan, Philip</creatorcontrib><creatorcontrib>Malde, Alpeshkumar K.</creatorcontrib><creatorcontrib>Anoopkumar‐Dukie, Shailendra</creatorcontrib><creatorcontrib>Rudrawar, Santosh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>ChemMedChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makwana, Vivek</au><au>Ryan, Philip</au><au>Malde, Alpeshkumar K.</au><au>Anoopkumar‐Dukie, Shailendra</au><au>Rudrawar, Santosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bisubstrate Ether‐Linked Uridine‐Peptide Conjugates as O‐GlcNAc Transferase Inhibitors</atitle><jtitle>ChemMedChem</jtitle><addtitle>ChemMedChem</addtitle><date>2021-02-04</date><risdate>2021</risdate><volume>16</volume><issue>3</issue><spage>477</spage><epage>483</epage><pages>477-483</pages><issn>1860-7179</issn><eissn>1860-7187</eissn><abstract>The O‐linked β‐N‐acetylglucosamine (O‐GlcNAc) transferase (OGT) is a master regulator of installing O‐GlcNAc onto serine or threonine residues on a multitude of target proteins. Numerous nuclear and cytosolic proteins of varying functional classes, including translational factors, transcription factors, signaling proteins, and kinases are OGT substrates. Aberrant O‐GlcNAcylation of proteins is implicated in signaling in metabolic diseases such as diabetes and cancer. Selective and potent OGT inhibitors are valuable tools to study the role of OGT in modulating a wide range of effects on cellular functions. We report linear bisubstrate ether‐linked uridine‐peptide conjugates as OGT inhibitors with micromolar affinity. In vitro evaluation of the compounds revealed the importance of donor substrate, linker and acceptor substrate in the rational design of bisubstrate analogue inhibitors. Molecular dynamics simulations shed light on the binding of this novel class of inhibitors and rationalized the effect of amino acid truncation of acceptor peptide on OGT inhibition. Blocking the master regulator: O‐GlcNAcylation is one of the prominent hallmarks of cancer, and O‐GlcNAc transferse (OGT) is solely responsible for this post‐translational modification. The basic design of bisubstrate inhibitors consists of the donor substrate and acceptor substrate analogues tethered via a suitable linker. In this study a linear bisubstrate analogue inhibitor demonstrated significant inhibitory activity against hOGT in vitro at micromolar concentrations.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32991074</pmid><doi>10.1002/cmdc.202000582</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4548-6433</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1860-7179
ispartof ChemMedChem, 2021-02, Vol.16 (3), p.477-483
issn 1860-7179
1860-7187
language eng
recordid cdi_proquest_miscellaneous_2447309886
source Wiley-Blackwell Journals
subjects Acceptor substrate
Amino acids
Bisubstrate inhibitors
Conjugates
Diabetes mellitus
Donor substrate
Inhibitors
Kinases
Metabolic disorders
Molecular dynamics
N-Acetylglucosamine
O-GlcNAcylation
OGT enzyme
Peptides
Post-translational modification
Proteins
Serine
Signaling
Substrates
Threonine
Transcription factors
Uridine
title Bisubstrate Ether‐Linked Uridine‐Peptide Conjugates as O‐GlcNAc Transferase Inhibitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bisubstrate%20Ether%E2%80%90Linked%20Uridine%E2%80%90Peptide%20Conjugates%20as%20O%E2%80%90GlcNAc%20Transferase%20Inhibitors&rft.jtitle=ChemMedChem&rft.au=Makwana,%20Vivek&rft.date=2021-02-04&rft.volume=16&rft.issue=3&rft.spage=477&rft.epage=483&rft.pages=477-483&rft.issn=1860-7179&rft.eissn=1860-7187&rft_id=info:doi/10.1002/cmdc.202000582&rft_dat=%3Cproquest_cross%3E2447309886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486050451&rft_id=info:pmid/32991074&rfr_iscdi=true