Dietary stevioside supplementation increases feed intake by altering the hypothalamic transcriptome profile and gut microbiota in broiler chickens

BACKGROUND Stevioside (STE) is a widely used sweetener. Despite the fact that chickens are insensitive to sweetness, dietary STE supplementation could increase the feed intake of broiler chickens. Stevioside might regulate the feeding behavior through functional mechanisms other than its high‐potenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the science of food and agriculture 2021-03, Vol.101 (5), p.2156-2167
Hauptverfasser: Jiang, Jingle, Qi, Lina, Lv, Zengpeng, Wei, Quanwei, Shi, Fangxiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2167
container_issue 5
container_start_page 2156
container_title Journal of the science of food and agriculture
container_volume 101
creator Jiang, Jingle
Qi, Lina
Lv, Zengpeng
Wei, Quanwei
Shi, Fangxiong
description BACKGROUND Stevioside (STE) is a widely used sweetener. Despite the fact that chickens are insensitive to sweetness, dietary STE supplementation could increase the feed intake of broiler chickens. Stevioside might regulate the feeding behavior through functional mechanisms other than its high‐potency sweetness. The present study was aimed to elucidate the potential sweetness‐independent mechanism of an STE‐induced orexigenic effect using the broiler chicken and considering the hypothalamic transcriptome profile and gut microbiome. RESULTS The analysis of RNA‐Seq identified 398 differently expressed genes (160 up‐regulated and 238 down‐regulated) in the hypothalamus of the STE‐supplemented group compared with the control group. Cluster analysis revealed several appetite‐related genes were differentially expressed, including NPY, NPY5R, TSHB, NMU, TPH2, and DDC. The analysis of 16S rRNA sequencing data also indicated that dietary STE supplementation increased the relative abundance of Lactobacillales, Bacilli, Lactobacillus, and Lactobacillaceae. Meanwhile, the proportion of Ruminococcaceae, Lachnospiraceae, Clostridia, and Clostridiales was decreased after dietary supplementation with STE. CONCLUSION Dietary STE supplementation promoted feed intake through the regulation of the hypothalamic neuroactive ligand‐receptor interaction pathway and the alteration of intestinal microbiota composition. This study provides valuable information about the sweetness‐independent mechanism of the STE‐induced orexigenic effect using the broiler chicken (which is insensitive to sweetness) as the animal model. © 2020 Society of Chemical Industry
doi_str_mv 10.1002/jsfa.10838
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2446995266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499699897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-4cdb56ed3c6c4a0de7f6ca09e86257e3eb94e09fdbaed7f7a4e9a380893bf8b13</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EIpPAhg9AltigSE3cL7e9jALhoUhZAOtW2S5nPOm2G9sNmt_IF-MwgUUWrFxWnbqqupeQVzV7VzPWnO2ShVKJVjwhm5rJoWKsZk_JpjSbqq-75ogcp7RjjEnJ-XNy1DZSlIF-Q-7eO8wQ9zRl_OlCcgZpWpdlwhl9huyCp87riJAwUYtoyjfDLVK1pzBljM7f0LxFut0vIW9hgtlpmiP4pKNbcpiRLjFYNyEFb-jNmmkhYlAuZChiVMVQmpHqrdO36NML8szClPDlw3tCvl9--Hbxqbq6_vj54vyq0m0_iKrTRvUcTau57oAZHCzXwCQK3vQDtqhkh0xaowDNYAfoUEIrmJCtskLV7Ql5e9At6_1YMeVxdknjNIHHsKax6TouZd9wXtA3j9BdWKMv2xWqeCqlkEOhTg9UuS6liHZcopuLuWPNxvukxvukxj9JFfj1g-SqZjT_0L_RFKA-AL-KO_v_SI1fvl6eH0R_A48aouc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499699897</pqid></control><display><type>article</type><title>Dietary stevioside supplementation increases feed intake by altering the hypothalamic transcriptome profile and gut microbiota in broiler chickens</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Jiang, Jingle ; Qi, Lina ; Lv, Zengpeng ; Wei, Quanwei ; Shi, Fangxiong</creator><creatorcontrib>Jiang, Jingle ; Qi, Lina ; Lv, Zengpeng ; Wei, Quanwei ; Shi, Fangxiong</creatorcontrib><description>BACKGROUND Stevioside (STE) is a widely used sweetener. Despite the fact that chickens are insensitive to sweetness, dietary STE supplementation could increase the feed intake of broiler chickens. Stevioside might regulate the feeding behavior through functional mechanisms other than its high‐potency sweetness. The present study was aimed to elucidate the potential sweetness‐independent mechanism of an STE‐induced orexigenic effect using the broiler chicken and considering the hypothalamic transcriptome profile and gut microbiome. RESULTS The analysis of RNA‐Seq identified 398 differently expressed genes (160 up‐regulated and 238 down‐regulated) in the hypothalamus of the STE‐supplemented group compared with the control group. Cluster analysis revealed several appetite‐related genes were differentially expressed, including NPY, NPY5R, TSHB, NMU, TPH2, and DDC. The analysis of 16S rRNA sequencing data also indicated that dietary STE supplementation increased the relative abundance of Lactobacillales, Bacilli, Lactobacillus, and Lactobacillaceae. Meanwhile, the proportion of Ruminococcaceae, Lachnospiraceae, Clostridia, and Clostridiales was decreased after dietary supplementation with STE. CONCLUSION Dietary STE supplementation promoted feed intake through the regulation of the hypothalamic neuroactive ligand‐receptor interaction pathway and the alteration of intestinal microbiota composition. This study provides valuable information about the sweetness‐independent mechanism of the STE‐induced orexigenic effect using the broiler chicken (which is insensitive to sweetness) as the animal model. © 2020 Society of Chemical Industry</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.10838</identifier><identifier>PMID: 32981085</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Animal Feed - analysis ; Animal models ; Animals ; Appetite ; Avian Proteins - genetics ; Avian Proteins - metabolism ; Bacilli ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation &amp; purification ; broiler chicken ; Chickens ; Chickens - genetics ; Chickens - metabolism ; Chickens - microbiology ; Cluster analysis ; Diet - veterinary ; Dietary intake ; Dietary Supplements - analysis ; Digestive system ; Diterpenes, Kaurane - metabolism ; Eating ; Feed additives ; feed intake ; Feeding Behavior ; Female ; Gastrointestinal Microbiome ; Gastrointestinal tract ; Gene expression ; Genes ; Glucosides - metabolism ; gut microbiota ; Hypothalamus ; Hypothalamus - metabolism ; Intestinal microflora ; Intestine ; Male ; Microbiomes ; Microbiota ; Neuropeptide Y ; Poultry ; Relative abundance ; rRNA 16S ; Stevioside ; Sweetness ; Transcriptome ; Transcriptomes</subject><ispartof>Journal of the science of food and agriculture, 2021-03, Vol.101 (5), p.2156-2167</ispartof><rights>2020 Society of Chemical Industry</rights><rights>2020 Society of Chemical Industry.</rights><rights>Copyright © 2021 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-4cdb56ed3c6c4a0de7f6ca09e86257e3eb94e09fdbaed7f7a4e9a380893bf8b13</citedby><cites>FETCH-LOGICAL-c3578-4cdb56ed3c6c4a0de7f6ca09e86257e3eb94e09fdbaed7f7a4e9a380893bf8b13</cites><orcidid>0000-0001-6271-6184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjsfa.10838$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjsfa.10838$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32981085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Jingle</creatorcontrib><creatorcontrib>Qi, Lina</creatorcontrib><creatorcontrib>Lv, Zengpeng</creatorcontrib><creatorcontrib>Wei, Quanwei</creatorcontrib><creatorcontrib>Shi, Fangxiong</creatorcontrib><title>Dietary stevioside supplementation increases feed intake by altering the hypothalamic transcriptome profile and gut microbiota in broiler chickens</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND Stevioside (STE) is a widely used sweetener. Despite the fact that chickens are insensitive to sweetness, dietary STE supplementation could increase the feed intake of broiler chickens. Stevioside might regulate the feeding behavior through functional mechanisms other than its high‐potency sweetness. The present study was aimed to elucidate the potential sweetness‐independent mechanism of an STE‐induced orexigenic effect using the broiler chicken and considering the hypothalamic transcriptome profile and gut microbiome. RESULTS The analysis of RNA‐Seq identified 398 differently expressed genes (160 up‐regulated and 238 down‐regulated) in the hypothalamus of the STE‐supplemented group compared with the control group. Cluster analysis revealed several appetite‐related genes were differentially expressed, including NPY, NPY5R, TSHB, NMU, TPH2, and DDC. The analysis of 16S rRNA sequencing data also indicated that dietary STE supplementation increased the relative abundance of Lactobacillales, Bacilli, Lactobacillus, and Lactobacillaceae. Meanwhile, the proportion of Ruminococcaceae, Lachnospiraceae, Clostridia, and Clostridiales was decreased after dietary supplementation with STE. CONCLUSION Dietary STE supplementation promoted feed intake through the regulation of the hypothalamic neuroactive ligand‐receptor interaction pathway and the alteration of intestinal microbiota composition. This study provides valuable information about the sweetness‐independent mechanism of the STE‐induced orexigenic effect using the broiler chicken (which is insensitive to sweetness) as the animal model. © 2020 Society of Chemical Industry</description><subject>Animal Feed - analysis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Appetite</subject><subject>Avian Proteins - genetics</subject><subject>Avian Proteins - metabolism</subject><subject>Bacilli</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation &amp; purification</subject><subject>broiler chicken</subject><subject>Chickens</subject><subject>Chickens - genetics</subject><subject>Chickens - metabolism</subject><subject>Chickens - microbiology</subject><subject>Cluster analysis</subject><subject>Diet - veterinary</subject><subject>Dietary intake</subject><subject>Dietary Supplements - analysis</subject><subject>Digestive system</subject><subject>Diterpenes, Kaurane - metabolism</subject><subject>Eating</subject><subject>Feed additives</subject><subject>feed intake</subject><subject>Feeding Behavior</subject><subject>Female</subject><subject>Gastrointestinal Microbiome</subject><subject>Gastrointestinal tract</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Glucosides - metabolism</subject><subject>gut microbiota</subject><subject>Hypothalamus</subject><subject>Hypothalamus - metabolism</subject><subject>Intestinal microflora</subject><subject>Intestine</subject><subject>Male</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Neuropeptide Y</subject><subject>Poultry</subject><subject>Relative abundance</subject><subject>rRNA 16S</subject><subject>Stevioside</subject><subject>Sweetness</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctuFDEQRS0EIpPAhg9AltigSE3cL7e9jALhoUhZAOtW2S5nPOm2G9sNmt_IF-MwgUUWrFxWnbqqupeQVzV7VzPWnO2ShVKJVjwhm5rJoWKsZk_JpjSbqq-75ogcp7RjjEnJ-XNy1DZSlIF-Q-7eO8wQ9zRl_OlCcgZpWpdlwhl9huyCp87riJAwUYtoyjfDLVK1pzBljM7f0LxFut0vIW9hgtlpmiP4pKNbcpiRLjFYNyEFb-jNmmkhYlAuZChiVMVQmpHqrdO36NML8szClPDlw3tCvl9--Hbxqbq6_vj54vyq0m0_iKrTRvUcTau57oAZHCzXwCQK3vQDtqhkh0xaowDNYAfoUEIrmJCtskLV7Ql5e9At6_1YMeVxdknjNIHHsKax6TouZd9wXtA3j9BdWKMv2xWqeCqlkEOhTg9UuS6liHZcopuLuWPNxvukxvukxj9JFfj1g-SqZjT_0L_RFKA-AL-KO_v_SI1fvl6eH0R_A48aouc</recordid><startdate>20210330</startdate><enddate>20210330</enddate><creator>Jiang, Jingle</creator><creator>Qi, Lina</creator><creator>Lv, Zengpeng</creator><creator>Wei, Quanwei</creator><creator>Shi, Fangxiong</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6271-6184</orcidid></search><sort><creationdate>20210330</creationdate><title>Dietary stevioside supplementation increases feed intake by altering the hypothalamic transcriptome profile and gut microbiota in broiler chickens</title><author>Jiang, Jingle ; Qi, Lina ; Lv, Zengpeng ; Wei, Quanwei ; Shi, Fangxiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-4cdb56ed3c6c4a0de7f6ca09e86257e3eb94e09fdbaed7f7a4e9a380893bf8b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal Feed - analysis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Appetite</topic><topic>Avian Proteins - genetics</topic><topic>Avian Proteins - metabolism</topic><topic>Bacilli</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation &amp; purification</topic><topic>broiler chicken</topic><topic>Chickens</topic><topic>Chickens - genetics</topic><topic>Chickens - metabolism</topic><topic>Chickens - microbiology</topic><topic>Cluster analysis</topic><topic>Diet - veterinary</topic><topic>Dietary intake</topic><topic>Dietary Supplements - analysis</topic><topic>Digestive system</topic><topic>Diterpenes, Kaurane - metabolism</topic><topic>Eating</topic><topic>Feed additives</topic><topic>feed intake</topic><topic>Feeding Behavior</topic><topic>Female</topic><topic>Gastrointestinal Microbiome</topic><topic>Gastrointestinal tract</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Glucosides - metabolism</topic><topic>gut microbiota</topic><topic>Hypothalamus</topic><topic>Hypothalamus - metabolism</topic><topic>Intestinal microflora</topic><topic>Intestine</topic><topic>Male</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Neuropeptide Y</topic><topic>Poultry</topic><topic>Relative abundance</topic><topic>rRNA 16S</topic><topic>Stevioside</topic><topic>Sweetness</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Jingle</creatorcontrib><creatorcontrib>Qi, Lina</creatorcontrib><creatorcontrib>Lv, Zengpeng</creatorcontrib><creatorcontrib>Wei, Quanwei</creatorcontrib><creatorcontrib>Shi, Fangxiong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Jingle</au><au>Qi, Lina</au><au>Lv, Zengpeng</au><au>Wei, Quanwei</au><au>Shi, Fangxiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dietary stevioside supplementation increases feed intake by altering the hypothalamic transcriptome profile and gut microbiota in broiler chickens</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2021-03-30</date><risdate>2021</risdate><volume>101</volume><issue>5</issue><spage>2156</spage><epage>2167</epage><pages>2156-2167</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND Stevioside (STE) is a widely used sweetener. Despite the fact that chickens are insensitive to sweetness, dietary STE supplementation could increase the feed intake of broiler chickens. Stevioside might regulate the feeding behavior through functional mechanisms other than its high‐potency sweetness. The present study was aimed to elucidate the potential sweetness‐independent mechanism of an STE‐induced orexigenic effect using the broiler chicken and considering the hypothalamic transcriptome profile and gut microbiome. RESULTS The analysis of RNA‐Seq identified 398 differently expressed genes (160 up‐regulated and 238 down‐regulated) in the hypothalamus of the STE‐supplemented group compared with the control group. Cluster analysis revealed several appetite‐related genes were differentially expressed, including NPY, NPY5R, TSHB, NMU, TPH2, and DDC. The analysis of 16S rRNA sequencing data also indicated that dietary STE supplementation increased the relative abundance of Lactobacillales, Bacilli, Lactobacillus, and Lactobacillaceae. Meanwhile, the proportion of Ruminococcaceae, Lachnospiraceae, Clostridia, and Clostridiales was decreased after dietary supplementation with STE. CONCLUSION Dietary STE supplementation promoted feed intake through the regulation of the hypothalamic neuroactive ligand‐receptor interaction pathway and the alteration of intestinal microbiota composition. This study provides valuable information about the sweetness‐independent mechanism of the STE‐induced orexigenic effect using the broiler chicken (which is insensitive to sweetness) as the animal model. © 2020 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>32981085</pmid><doi>10.1002/jsfa.10838</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6271-6184</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-5142
ispartof Journal of the science of food and agriculture, 2021-03, Vol.101 (5), p.2156-2167
issn 0022-5142
1097-0010
language eng
recordid cdi_proquest_miscellaneous_2446995266
source MEDLINE; Wiley Journals
subjects Animal Feed - analysis
Animal models
Animals
Appetite
Avian Proteins - genetics
Avian Proteins - metabolism
Bacilli
Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
broiler chicken
Chickens
Chickens - genetics
Chickens - metabolism
Chickens - microbiology
Cluster analysis
Diet - veterinary
Dietary intake
Dietary Supplements - analysis
Digestive system
Diterpenes, Kaurane - metabolism
Eating
Feed additives
feed intake
Feeding Behavior
Female
Gastrointestinal Microbiome
Gastrointestinal tract
Gene expression
Genes
Glucosides - metabolism
gut microbiota
Hypothalamus
Hypothalamus - metabolism
Intestinal microflora
Intestine
Male
Microbiomes
Microbiota
Neuropeptide Y
Poultry
Relative abundance
rRNA 16S
Stevioside
Sweetness
Transcriptome
Transcriptomes
title Dietary stevioside supplementation increases feed intake by altering the hypothalamic transcriptome profile and gut microbiota in broiler chickens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dietary%20stevioside%20supplementation%20increases%20feed%20intake%20by%20altering%20the%20hypothalamic%20transcriptome%20profile%20and%20gut%20microbiota%20in%20broiler%20chickens&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Jiang,%20Jingle&rft.date=2021-03-30&rft.volume=101&rft.issue=5&rft.spage=2156&rft.epage=2167&rft.pages=2156-2167&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.10838&rft_dat=%3Cproquest_cross%3E2499699897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499699897&rft_id=info:pmid/32981085&rfr_iscdi=true