Dietary stevioside supplementation increases feed intake by altering the hypothalamic transcriptome profile and gut microbiota in broiler chickens
BACKGROUND Stevioside (STE) is a widely used sweetener. Despite the fact that chickens are insensitive to sweetness, dietary STE supplementation could increase the feed intake of broiler chickens. Stevioside might regulate the feeding behavior through functional mechanisms other than its high‐potenc...
Gespeichert in:
Veröffentlicht in: | Journal of the science of food and agriculture 2021-03, Vol.101 (5), p.2156-2167 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2167 |
---|---|
container_issue | 5 |
container_start_page | 2156 |
container_title | Journal of the science of food and agriculture |
container_volume | 101 |
creator | Jiang, Jingle Qi, Lina Lv, Zengpeng Wei, Quanwei Shi, Fangxiong |
description | BACKGROUND
Stevioside (STE) is a widely used sweetener. Despite the fact that chickens are insensitive to sweetness, dietary STE supplementation could increase the feed intake of broiler chickens. Stevioside might regulate the feeding behavior through functional mechanisms other than its high‐potency sweetness. The present study was aimed to elucidate the potential sweetness‐independent mechanism of an STE‐induced orexigenic effect using the broiler chicken and considering the hypothalamic transcriptome profile and gut microbiome.
RESULTS
The analysis of RNA‐Seq identified 398 differently expressed genes (160 up‐regulated and 238 down‐regulated) in the hypothalamus of the STE‐supplemented group compared with the control group. Cluster analysis revealed several appetite‐related genes were differentially expressed, including NPY, NPY5R, TSHB, NMU, TPH2, and DDC. The analysis of 16S rRNA sequencing data also indicated that dietary STE supplementation increased the relative abundance of Lactobacillales, Bacilli, Lactobacillus, and Lactobacillaceae. Meanwhile, the proportion of Ruminococcaceae, Lachnospiraceae, Clostridia, and Clostridiales was decreased after dietary supplementation with STE.
CONCLUSION
Dietary STE supplementation promoted feed intake through the regulation of the hypothalamic neuroactive ligand‐receptor interaction pathway and the alteration of intestinal microbiota composition. This study provides valuable information about the sweetness‐independent mechanism of the STE‐induced orexigenic effect using the broiler chicken (which is insensitive to sweetness) as the animal model. © 2020 Society of Chemical Industry |
doi_str_mv | 10.1002/jsfa.10838 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2446995266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499699897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-4cdb56ed3c6c4a0de7f6ca09e86257e3eb94e09fdbaed7f7a4e9a380893bf8b13</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EIpPAhg9AltigSE3cL7e9jALhoUhZAOtW2S5nPOm2G9sNmt_IF-MwgUUWrFxWnbqqupeQVzV7VzPWnO2ShVKJVjwhm5rJoWKsZk_JpjSbqq-75ogcp7RjjEnJ-XNy1DZSlIF-Q-7eO8wQ9zRl_OlCcgZpWpdlwhl9huyCp87riJAwUYtoyjfDLVK1pzBljM7f0LxFut0vIW9hgtlpmiP4pKNbcpiRLjFYNyEFb-jNmmkhYlAuZChiVMVQmpHqrdO36NML8szClPDlw3tCvl9--Hbxqbq6_vj54vyq0m0_iKrTRvUcTau57oAZHCzXwCQK3vQDtqhkh0xaowDNYAfoUEIrmJCtskLV7Ql5e9At6_1YMeVxdknjNIHHsKax6TouZd9wXtA3j9BdWKMv2xWqeCqlkEOhTg9UuS6liHZcopuLuWPNxvukxvukxj9JFfj1g-SqZjT_0L_RFKA-AL-KO_v_SI1fvl6eH0R_A48aouc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499699897</pqid></control><display><type>article</type><title>Dietary stevioside supplementation increases feed intake by altering the hypothalamic transcriptome profile and gut microbiota in broiler chickens</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Jiang, Jingle ; Qi, Lina ; Lv, Zengpeng ; Wei, Quanwei ; Shi, Fangxiong</creator><creatorcontrib>Jiang, Jingle ; Qi, Lina ; Lv, Zengpeng ; Wei, Quanwei ; Shi, Fangxiong</creatorcontrib><description>BACKGROUND
Stevioside (STE) is a widely used sweetener. Despite the fact that chickens are insensitive to sweetness, dietary STE supplementation could increase the feed intake of broiler chickens. Stevioside might regulate the feeding behavior through functional mechanisms other than its high‐potency sweetness. The present study was aimed to elucidate the potential sweetness‐independent mechanism of an STE‐induced orexigenic effect using the broiler chicken and considering the hypothalamic transcriptome profile and gut microbiome.
RESULTS
The analysis of RNA‐Seq identified 398 differently expressed genes (160 up‐regulated and 238 down‐regulated) in the hypothalamus of the STE‐supplemented group compared with the control group. Cluster analysis revealed several appetite‐related genes were differentially expressed, including NPY, NPY5R, TSHB, NMU, TPH2, and DDC. The analysis of 16S rRNA sequencing data also indicated that dietary STE supplementation increased the relative abundance of Lactobacillales, Bacilli, Lactobacillus, and Lactobacillaceae. Meanwhile, the proportion of Ruminococcaceae, Lachnospiraceae, Clostridia, and Clostridiales was decreased after dietary supplementation with STE.
CONCLUSION
Dietary STE supplementation promoted feed intake through the regulation of the hypothalamic neuroactive ligand‐receptor interaction pathway and the alteration of intestinal microbiota composition. This study provides valuable information about the sweetness‐independent mechanism of the STE‐induced orexigenic effect using the broiler chicken (which is insensitive to sweetness) as the animal model. © 2020 Society of Chemical Industry</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.10838</identifier><identifier>PMID: 32981085</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Animal Feed - analysis ; Animal models ; Animals ; Appetite ; Avian Proteins - genetics ; Avian Proteins - metabolism ; Bacilli ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation & purification ; broiler chicken ; Chickens ; Chickens - genetics ; Chickens - metabolism ; Chickens - microbiology ; Cluster analysis ; Diet - veterinary ; Dietary intake ; Dietary Supplements - analysis ; Digestive system ; Diterpenes, Kaurane - metabolism ; Eating ; Feed additives ; feed intake ; Feeding Behavior ; Female ; Gastrointestinal Microbiome ; Gastrointestinal tract ; Gene expression ; Genes ; Glucosides - metabolism ; gut microbiota ; Hypothalamus ; Hypothalamus - metabolism ; Intestinal microflora ; Intestine ; Male ; Microbiomes ; Microbiota ; Neuropeptide Y ; Poultry ; Relative abundance ; rRNA 16S ; Stevioside ; Sweetness ; Transcriptome ; Transcriptomes</subject><ispartof>Journal of the science of food and agriculture, 2021-03, Vol.101 (5), p.2156-2167</ispartof><rights>2020 Society of Chemical Industry</rights><rights>2020 Society of Chemical Industry.</rights><rights>Copyright © 2021 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-4cdb56ed3c6c4a0de7f6ca09e86257e3eb94e09fdbaed7f7a4e9a380893bf8b13</citedby><cites>FETCH-LOGICAL-c3578-4cdb56ed3c6c4a0de7f6ca09e86257e3eb94e09fdbaed7f7a4e9a380893bf8b13</cites><orcidid>0000-0001-6271-6184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjsfa.10838$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjsfa.10838$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32981085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Jingle</creatorcontrib><creatorcontrib>Qi, Lina</creatorcontrib><creatorcontrib>Lv, Zengpeng</creatorcontrib><creatorcontrib>Wei, Quanwei</creatorcontrib><creatorcontrib>Shi, Fangxiong</creatorcontrib><title>Dietary stevioside supplementation increases feed intake by altering the hypothalamic transcriptome profile and gut microbiota in broiler chickens</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND
Stevioside (STE) is a widely used sweetener. Despite the fact that chickens are insensitive to sweetness, dietary STE supplementation could increase the feed intake of broiler chickens. Stevioside might regulate the feeding behavior through functional mechanisms other than its high‐potency sweetness. The present study was aimed to elucidate the potential sweetness‐independent mechanism of an STE‐induced orexigenic effect using the broiler chicken and considering the hypothalamic transcriptome profile and gut microbiome.
RESULTS
The analysis of RNA‐Seq identified 398 differently expressed genes (160 up‐regulated and 238 down‐regulated) in the hypothalamus of the STE‐supplemented group compared with the control group. Cluster analysis revealed several appetite‐related genes were differentially expressed, including NPY, NPY5R, TSHB, NMU, TPH2, and DDC. The analysis of 16S rRNA sequencing data also indicated that dietary STE supplementation increased the relative abundance of Lactobacillales, Bacilli, Lactobacillus, and Lactobacillaceae. Meanwhile, the proportion of Ruminococcaceae, Lachnospiraceae, Clostridia, and Clostridiales was decreased after dietary supplementation with STE.
CONCLUSION
Dietary STE supplementation promoted feed intake through the regulation of the hypothalamic neuroactive ligand‐receptor interaction pathway and the alteration of intestinal microbiota composition. This study provides valuable information about the sweetness‐independent mechanism of the STE‐induced orexigenic effect using the broiler chicken (which is insensitive to sweetness) as the animal model. © 2020 Society of Chemical Industry</description><subject>Animal Feed - analysis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Appetite</subject><subject>Avian Proteins - genetics</subject><subject>Avian Proteins - metabolism</subject><subject>Bacilli</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>broiler chicken</subject><subject>Chickens</subject><subject>Chickens - genetics</subject><subject>Chickens - metabolism</subject><subject>Chickens - microbiology</subject><subject>Cluster analysis</subject><subject>Diet - veterinary</subject><subject>Dietary intake</subject><subject>Dietary Supplements - analysis</subject><subject>Digestive system</subject><subject>Diterpenes, Kaurane - metabolism</subject><subject>Eating</subject><subject>Feed additives</subject><subject>feed intake</subject><subject>Feeding Behavior</subject><subject>Female</subject><subject>Gastrointestinal Microbiome</subject><subject>Gastrointestinal tract</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Glucosides - metabolism</subject><subject>gut microbiota</subject><subject>Hypothalamus</subject><subject>Hypothalamus - metabolism</subject><subject>Intestinal microflora</subject><subject>Intestine</subject><subject>Male</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Neuropeptide Y</subject><subject>Poultry</subject><subject>Relative abundance</subject><subject>rRNA 16S</subject><subject>Stevioside</subject><subject>Sweetness</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctuFDEQRS0EIpPAhg9AltigSE3cL7e9jALhoUhZAOtW2S5nPOm2G9sNmt_IF-MwgUUWrFxWnbqqupeQVzV7VzPWnO2ShVKJVjwhm5rJoWKsZk_JpjSbqq-75ogcp7RjjEnJ-XNy1DZSlIF-Q-7eO8wQ9zRl_OlCcgZpWpdlwhl9huyCp87riJAwUYtoyjfDLVK1pzBljM7f0LxFut0vIW9hgtlpmiP4pKNbcpiRLjFYNyEFb-jNmmkhYlAuZChiVMVQmpHqrdO36NML8szClPDlw3tCvl9--Hbxqbq6_vj54vyq0m0_iKrTRvUcTau57oAZHCzXwCQK3vQDtqhkh0xaowDNYAfoUEIrmJCtskLV7Ql5e9At6_1YMeVxdknjNIHHsKax6TouZd9wXtA3j9BdWKMv2xWqeCqlkEOhTg9UuS6liHZcopuLuWPNxvukxvukxj9JFfj1g-SqZjT_0L_RFKA-AL-KO_v_SI1fvl6eH0R_A48aouc</recordid><startdate>20210330</startdate><enddate>20210330</enddate><creator>Jiang, Jingle</creator><creator>Qi, Lina</creator><creator>Lv, Zengpeng</creator><creator>Wei, Quanwei</creator><creator>Shi, Fangxiong</creator><general>John Wiley & Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6271-6184</orcidid></search><sort><creationdate>20210330</creationdate><title>Dietary stevioside supplementation increases feed intake by altering the hypothalamic transcriptome profile and gut microbiota in broiler chickens</title><author>Jiang, Jingle ; Qi, Lina ; Lv, Zengpeng ; Wei, Quanwei ; Shi, Fangxiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-4cdb56ed3c6c4a0de7f6ca09e86257e3eb94e09fdbaed7f7a4e9a380893bf8b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal Feed - analysis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Appetite</topic><topic>Avian Proteins - genetics</topic><topic>Avian Proteins - metabolism</topic><topic>Bacilli</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>broiler chicken</topic><topic>Chickens</topic><topic>Chickens - genetics</topic><topic>Chickens - metabolism</topic><topic>Chickens - microbiology</topic><topic>Cluster analysis</topic><topic>Diet - veterinary</topic><topic>Dietary intake</topic><topic>Dietary Supplements - analysis</topic><topic>Digestive system</topic><topic>Diterpenes, Kaurane - metabolism</topic><topic>Eating</topic><topic>Feed additives</topic><topic>feed intake</topic><topic>Feeding Behavior</topic><topic>Female</topic><topic>Gastrointestinal Microbiome</topic><topic>Gastrointestinal tract</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Glucosides - metabolism</topic><topic>gut microbiota</topic><topic>Hypothalamus</topic><topic>Hypothalamus - metabolism</topic><topic>Intestinal microflora</topic><topic>Intestine</topic><topic>Male</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Neuropeptide Y</topic><topic>Poultry</topic><topic>Relative abundance</topic><topic>rRNA 16S</topic><topic>Stevioside</topic><topic>Sweetness</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Jingle</creatorcontrib><creatorcontrib>Qi, Lina</creatorcontrib><creatorcontrib>Lv, Zengpeng</creatorcontrib><creatorcontrib>Wei, Quanwei</creatorcontrib><creatorcontrib>Shi, Fangxiong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Jingle</au><au>Qi, Lina</au><au>Lv, Zengpeng</au><au>Wei, Quanwei</au><au>Shi, Fangxiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dietary stevioside supplementation increases feed intake by altering the hypothalamic transcriptome profile and gut microbiota in broiler chickens</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2021-03-30</date><risdate>2021</risdate><volume>101</volume><issue>5</issue><spage>2156</spage><epage>2167</epage><pages>2156-2167</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND
Stevioside (STE) is a widely used sweetener. Despite the fact that chickens are insensitive to sweetness, dietary STE supplementation could increase the feed intake of broiler chickens. Stevioside might regulate the feeding behavior through functional mechanisms other than its high‐potency sweetness. The present study was aimed to elucidate the potential sweetness‐independent mechanism of an STE‐induced orexigenic effect using the broiler chicken and considering the hypothalamic transcriptome profile and gut microbiome.
RESULTS
The analysis of RNA‐Seq identified 398 differently expressed genes (160 up‐regulated and 238 down‐regulated) in the hypothalamus of the STE‐supplemented group compared with the control group. Cluster analysis revealed several appetite‐related genes were differentially expressed, including NPY, NPY5R, TSHB, NMU, TPH2, and DDC. The analysis of 16S rRNA sequencing data also indicated that dietary STE supplementation increased the relative abundance of Lactobacillales, Bacilli, Lactobacillus, and Lactobacillaceae. Meanwhile, the proportion of Ruminococcaceae, Lachnospiraceae, Clostridia, and Clostridiales was decreased after dietary supplementation with STE.
CONCLUSION
Dietary STE supplementation promoted feed intake through the regulation of the hypothalamic neuroactive ligand‐receptor interaction pathway and the alteration of intestinal microbiota composition. This study provides valuable information about the sweetness‐independent mechanism of the STE‐induced orexigenic effect using the broiler chicken (which is insensitive to sweetness) as the animal model. © 2020 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>32981085</pmid><doi>10.1002/jsfa.10838</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6271-6184</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5142 |
ispartof | Journal of the science of food and agriculture, 2021-03, Vol.101 (5), p.2156-2167 |
issn | 0022-5142 1097-0010 |
language | eng |
recordid | cdi_proquest_miscellaneous_2446995266 |
source | MEDLINE; Wiley Journals |
subjects | Animal Feed - analysis Animal models Animals Appetite Avian Proteins - genetics Avian Proteins - metabolism Bacilli Bacteria - classification Bacteria - genetics Bacteria - isolation & purification broiler chicken Chickens Chickens - genetics Chickens - metabolism Chickens - microbiology Cluster analysis Diet - veterinary Dietary intake Dietary Supplements - analysis Digestive system Diterpenes, Kaurane - metabolism Eating Feed additives feed intake Feeding Behavior Female Gastrointestinal Microbiome Gastrointestinal tract Gene expression Genes Glucosides - metabolism gut microbiota Hypothalamus Hypothalamus - metabolism Intestinal microflora Intestine Male Microbiomes Microbiota Neuropeptide Y Poultry Relative abundance rRNA 16S Stevioside Sweetness Transcriptome Transcriptomes |
title | Dietary stevioside supplementation increases feed intake by altering the hypothalamic transcriptome profile and gut microbiota in broiler chickens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dietary%20stevioside%20supplementation%20increases%20feed%20intake%20by%20altering%20the%20hypothalamic%20transcriptome%20profile%20and%20gut%20microbiota%20in%20broiler%20chickens&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Jiang,%20Jingle&rft.date=2021-03-30&rft.volume=101&rft.issue=5&rft.spage=2156&rft.epage=2167&rft.pages=2156-2167&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.10838&rft_dat=%3Cproquest_cross%3E2499699897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499699897&rft_id=info:pmid/32981085&rfr_iscdi=true |