Tyrosine‐derived polycarbonate nerve guidance tubes elicit proregenerative extracellular matrix deposition when used to bridge segmental nerve defects in swine
Promising biomaterials should be tested in appropriate large animal models that recapitulate human inflammatory and regenerative responses. Previous studies have shown tyrosine‐derived polycarbonates (TyrPC) are versatile biomaterials with a wide range of applications across multiple disciplines. Th...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2021-07, Vol.109 (7), p.1183-1195 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1195 |
---|---|
container_issue | 7 |
container_start_page | 1183 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 109 |
creator | Burrell, Justin C. Bhatnagar, Divya Brown, Dan P. Murthy, N. Sanjeeva Dutton, John Browne, Kevin D. Laimo, Franco A. Ali, Zarina S. Rosen, Joseph M. Kaplan, Hilton M. Kohn, Joachim Cullen, D. Kacy |
description | Promising biomaterials should be tested in appropriate large animal models that recapitulate human inflammatory and regenerative responses. Previous studies have shown tyrosine‐derived polycarbonates (TyrPC) are versatile biomaterials with a wide range of applications across multiple disciplines. The library of TyrPC has been well studied and consists of thousands of polymer compositions with tunable mechanical characteristics and degradation and resorption rates that are useful for nerve guidance tubes (NGTs). NGTs made of different TyrPCs have been used in segmental nerve defect models in small animals. The current study is an extension of this work and evaluates NGTs made using two different TyrPC compositions in a 1 cm porcine peripheral nerve repair model. We first evaluated a nondegradable TyrPC formulation, demonstrating proof‐of‐concept chronic regenerative efficacy up to 6 months with similar nerve/muscle electrophysiology and morphometry to the autograft repair control. Next, we characterized the acute regenerative response using a degradable TyrPC formulation. After 2 weeks in vivo, TyrPC NGT promoted greater deposition of pro‐regenerative extracellular matrix (ECM) constituents (in particular collagen I, collagen III, collagen IV, laminin, and fibronectin) compared to commercially available collagen‐based NGTs. This corresponded with dense Schwann cell infiltration and axon extension across the lumen. These findings confirmed results reported previously in a mouse model and reveal that TyrPC NGTs were well tolerated in swine and facilitated host axon regeneration and Schwann cell infiltration in the acute phase across segmental defects ‐ likely by eliciting a favorable neurotrophic ECM milieu. This regenerative response ultimately can contribute to functional recovery. |
doi_str_mv | 10.1002/jbm.a.37110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2446988725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522394018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3490-445eadc0fe67888c7f6dd195cdab7fcb77e2639c34fa637369cae214627f08d63</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0Eon_gxB1Z4oJUZbGd2I6PbUWhqIhLOVuOPVm8SpzFdrrdWx-BV-DVeBK83YUDB04eWb_5vpn5EHpFyYISwt6tunFhFrWklDxBx5RzVjVK8Ke7ulFVzZQ4QicprQosCGfP0VH5a7ls1TH6ebuNU_IBfj38cBD9HTi8noatNbGbgsmAA8Q7wMvZOxMs4Dx3kDAM3vqM13GKsISCmFxaMdznaCwMwzyYiEeTo7_HDtbFIfsp4M03CHhOxSNPuIveLQEnWI4QshkOTg56sDlhH3DalMFeoGe9GRK8PLyn6OvV-9vLj9XNlw_Xl-c3la0bRaqm4WCcJT0I2batlb1wjipunelkbzspgYlaFbg3opa1UNYAo41gsietE_UpervXLUt9nyFlPfq028UEmOakWdMI1baS8YK--QddTXMMZTrNOGO1aghtC3W2p2y5cIrQ63X0o4lbTYneJadLctrox-QK_fqgOXcjuL_sn6gKwPbAxg-w_Z-W_nTx-Xyv-hsMFamk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522394018</pqid></control><display><type>article</type><title>Tyrosine‐derived polycarbonate nerve guidance tubes elicit proregenerative extracellular matrix deposition when used to bridge segmental nerve defects in swine</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Burrell, Justin C. ; Bhatnagar, Divya ; Brown, Dan P. ; Murthy, N. Sanjeeva ; Dutton, John ; Browne, Kevin D. ; Laimo, Franco A. ; Ali, Zarina S. ; Rosen, Joseph M. ; Kaplan, Hilton M. ; Kohn, Joachim ; Cullen, D. Kacy</creator><creatorcontrib>Burrell, Justin C. ; Bhatnagar, Divya ; Brown, Dan P. ; Murthy, N. Sanjeeva ; Dutton, John ; Browne, Kevin D. ; Laimo, Franco A. ; Ali, Zarina S. ; Rosen, Joseph M. ; Kaplan, Hilton M. ; Kohn, Joachim ; Cullen, D. Kacy</creatorcontrib><description>Promising biomaterials should be tested in appropriate large animal models that recapitulate human inflammatory and regenerative responses. Previous studies have shown tyrosine‐derived polycarbonates (TyrPC) are versatile biomaterials with a wide range of applications across multiple disciplines. The library of TyrPC has been well studied and consists of thousands of polymer compositions with tunable mechanical characteristics and degradation and resorption rates that are useful for nerve guidance tubes (NGTs). NGTs made of different TyrPCs have been used in segmental nerve defect models in small animals. The current study is an extension of this work and evaluates NGTs made using two different TyrPC compositions in a 1 cm porcine peripheral nerve repair model. We first evaluated a nondegradable TyrPC formulation, demonstrating proof‐of‐concept chronic regenerative efficacy up to 6 months with similar nerve/muscle electrophysiology and morphometry to the autograft repair control. Next, we characterized the acute regenerative response using a degradable TyrPC formulation. After 2 weeks in vivo, TyrPC NGT promoted greater deposition of pro‐regenerative extracellular matrix (ECM) constituents (in particular collagen I, collagen III, collagen IV, laminin, and fibronectin) compared to commercially available collagen‐based NGTs. This corresponded with dense Schwann cell infiltration and axon extension across the lumen. These findings confirmed results reported previously in a mouse model and reveal that TyrPC NGTs were well tolerated in swine and facilitated host axon regeneration and Schwann cell infiltration in the acute phase across segmental defects ‐ likely by eliciting a favorable neurotrophic ECM milieu. This regenerative response ultimately can contribute to functional recovery.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.37110</identifier><identifier>PMID: 32985789</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Animal models ; Animals ; autograft ; Biomaterials ; Biomedical materials ; Collagen ; Collagen (type I) ; Collagen (type III) ; Collagen (type IV) ; Composition ; Defects ; Deposition ; Electrophysiology ; Extracellular matrix ; Extracellular Matrix - metabolism ; extracellular matrix protein deposition ; Fibronectin ; Guided Tissue Regeneration - methods ; Infiltration ; Inflammation ; Laminin ; large animal ; Mechanical properties ; Morphometry ; Muscles ; nerve guidance tube ; Nerve Regeneration ; Peripheral Nerve Injuries - therapy ; peripheral nerve injury ; Peripheral nerves ; Peroneal Nerve - injuries ; Peroneal Nerve - metabolism ; Peroneal Nerve - physiology ; Polycarbonate ; Polycarbonate resins ; Polycarboxylate Cement - chemistry ; Polymers ; Recovery of function ; Regeneration ; Repair ; Schwann Cells - cytology ; Schwann Cells - metabolism ; Swine ; Tissue Scaffolds - chemistry ; Tubes ; Tyrosine ; Tyrosine - chemistry ; tyrosine‐derived polycarbonate</subject><ispartof>Journal of biomedical materials research. Part A, 2021-07, Vol.109 (7), p.1183-1195</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2020 Wiley Periodicals LLC.</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3490-445eadc0fe67888c7f6dd195cdab7fcb77e2639c34fa637369cae214627f08d63</citedby><cites>FETCH-LOGICAL-c3490-445eadc0fe67888c7f6dd195cdab7fcb77e2639c34fa637369cae214627f08d63</cites><orcidid>0000-0002-5355-5216 ; 0000-0002-2324-5874 ; 0000-0002-5361-9224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.37110$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.37110$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32985789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burrell, Justin C.</creatorcontrib><creatorcontrib>Bhatnagar, Divya</creatorcontrib><creatorcontrib>Brown, Dan P.</creatorcontrib><creatorcontrib>Murthy, N. Sanjeeva</creatorcontrib><creatorcontrib>Dutton, John</creatorcontrib><creatorcontrib>Browne, Kevin D.</creatorcontrib><creatorcontrib>Laimo, Franco A.</creatorcontrib><creatorcontrib>Ali, Zarina S.</creatorcontrib><creatorcontrib>Rosen, Joseph M.</creatorcontrib><creatorcontrib>Kaplan, Hilton M.</creatorcontrib><creatorcontrib>Kohn, Joachim</creatorcontrib><creatorcontrib>Cullen, D. Kacy</creatorcontrib><title>Tyrosine‐derived polycarbonate nerve guidance tubes elicit proregenerative extracellular matrix deposition when used to bridge segmental nerve defects in swine</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Promising biomaterials should be tested in appropriate large animal models that recapitulate human inflammatory and regenerative responses. Previous studies have shown tyrosine‐derived polycarbonates (TyrPC) are versatile biomaterials with a wide range of applications across multiple disciplines. The library of TyrPC has been well studied and consists of thousands of polymer compositions with tunable mechanical characteristics and degradation and resorption rates that are useful for nerve guidance tubes (NGTs). NGTs made of different TyrPCs have been used in segmental nerve defect models in small animals. The current study is an extension of this work and evaluates NGTs made using two different TyrPC compositions in a 1 cm porcine peripheral nerve repair model. We first evaluated a nondegradable TyrPC formulation, demonstrating proof‐of‐concept chronic regenerative efficacy up to 6 months with similar nerve/muscle electrophysiology and morphometry to the autograft repair control. Next, we characterized the acute regenerative response using a degradable TyrPC formulation. After 2 weeks in vivo, TyrPC NGT promoted greater deposition of pro‐regenerative extracellular matrix (ECM) constituents (in particular collagen I, collagen III, collagen IV, laminin, and fibronectin) compared to commercially available collagen‐based NGTs. This corresponded with dense Schwann cell infiltration and axon extension across the lumen. These findings confirmed results reported previously in a mouse model and reveal that TyrPC NGTs were well tolerated in swine and facilitated host axon regeneration and Schwann cell infiltration in the acute phase across segmental defects ‐ likely by eliciting a favorable neurotrophic ECM milieu. This regenerative response ultimately can contribute to functional recovery.</description><subject>Animal models</subject><subject>Animals</subject><subject>autograft</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Collagen (type III)</subject><subject>Collagen (type IV)</subject><subject>Composition</subject><subject>Defects</subject><subject>Deposition</subject><subject>Electrophysiology</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - metabolism</subject><subject>extracellular matrix protein deposition</subject><subject>Fibronectin</subject><subject>Guided Tissue Regeneration - methods</subject><subject>Infiltration</subject><subject>Inflammation</subject><subject>Laminin</subject><subject>large animal</subject><subject>Mechanical properties</subject><subject>Morphometry</subject><subject>Muscles</subject><subject>nerve guidance tube</subject><subject>Nerve Regeneration</subject><subject>Peripheral Nerve Injuries - therapy</subject><subject>peripheral nerve injury</subject><subject>Peripheral nerves</subject><subject>Peroneal Nerve - injuries</subject><subject>Peroneal Nerve - metabolism</subject><subject>Peroneal Nerve - physiology</subject><subject>Polycarbonate</subject><subject>Polycarbonate resins</subject><subject>Polycarboxylate Cement - chemistry</subject><subject>Polymers</subject><subject>Recovery of function</subject><subject>Regeneration</subject><subject>Repair</subject><subject>Schwann Cells - cytology</subject><subject>Schwann Cells - metabolism</subject><subject>Swine</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Tubes</subject><subject>Tyrosine</subject><subject>Tyrosine - chemistry</subject><subject>tyrosine‐derived polycarbonate</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQxi0Eon_gxB1Z4oJUZbGd2I6PbUWhqIhLOVuOPVm8SpzFdrrdWx-BV-DVeBK83YUDB04eWb_5vpn5EHpFyYISwt6tunFhFrWklDxBx5RzVjVK8Ke7ulFVzZQ4QicprQosCGfP0VH5a7ls1TH6ebuNU_IBfj38cBD9HTi8noatNbGbgsmAA8Q7wMvZOxMs4Dx3kDAM3vqM13GKsISCmFxaMdznaCwMwzyYiEeTo7_HDtbFIfsp4M03CHhOxSNPuIveLQEnWI4QshkOTg56sDlhH3DalMFeoGe9GRK8PLyn6OvV-9vLj9XNlw_Xl-c3la0bRaqm4WCcJT0I2batlb1wjipunelkbzspgYlaFbg3opa1UNYAo41gsietE_UpervXLUt9nyFlPfq028UEmOakWdMI1baS8YK--QddTXMMZTrNOGO1aghtC3W2p2y5cIrQ63X0o4lbTYneJadLctrox-QK_fqgOXcjuL_sn6gKwPbAxg-w_Z-W_nTx-Xyv-hsMFamk</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Burrell, Justin C.</creator><creator>Bhatnagar, Divya</creator><creator>Brown, Dan P.</creator><creator>Murthy, N. Sanjeeva</creator><creator>Dutton, John</creator><creator>Browne, Kevin D.</creator><creator>Laimo, Franco A.</creator><creator>Ali, Zarina S.</creator><creator>Rosen, Joseph M.</creator><creator>Kaplan, Hilton M.</creator><creator>Kohn, Joachim</creator><creator>Cullen, D. Kacy</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5355-5216</orcidid><orcidid>https://orcid.org/0000-0002-2324-5874</orcidid><orcidid>https://orcid.org/0000-0002-5361-9224</orcidid></search><sort><creationdate>202107</creationdate><title>Tyrosine‐derived polycarbonate nerve guidance tubes elicit proregenerative extracellular matrix deposition when used to bridge segmental nerve defects in swine</title><author>Burrell, Justin C. ; Bhatnagar, Divya ; Brown, Dan P. ; Murthy, N. Sanjeeva ; Dutton, John ; Browne, Kevin D. ; Laimo, Franco A. ; Ali, Zarina S. ; Rosen, Joseph M. ; Kaplan, Hilton M. ; Kohn, Joachim ; Cullen, D. Kacy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3490-445eadc0fe67888c7f6dd195cdab7fcb77e2639c34fa637369cae214627f08d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>autograft</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Collagen (type III)</topic><topic>Collagen (type IV)</topic><topic>Composition</topic><topic>Defects</topic><topic>Deposition</topic><topic>Electrophysiology</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - metabolism</topic><topic>extracellular matrix protein deposition</topic><topic>Fibronectin</topic><topic>Guided Tissue Regeneration - methods</topic><topic>Infiltration</topic><topic>Inflammation</topic><topic>Laminin</topic><topic>large animal</topic><topic>Mechanical properties</topic><topic>Morphometry</topic><topic>Muscles</topic><topic>nerve guidance tube</topic><topic>Nerve Regeneration</topic><topic>Peripheral Nerve Injuries - therapy</topic><topic>peripheral nerve injury</topic><topic>Peripheral nerves</topic><topic>Peroneal Nerve - injuries</topic><topic>Peroneal Nerve - metabolism</topic><topic>Peroneal Nerve - physiology</topic><topic>Polycarbonate</topic><topic>Polycarbonate resins</topic><topic>Polycarboxylate Cement - chemistry</topic><topic>Polymers</topic><topic>Recovery of function</topic><topic>Regeneration</topic><topic>Repair</topic><topic>Schwann Cells - cytology</topic><topic>Schwann Cells - metabolism</topic><topic>Swine</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Tubes</topic><topic>Tyrosine</topic><topic>Tyrosine - chemistry</topic><topic>tyrosine‐derived polycarbonate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burrell, Justin C.</creatorcontrib><creatorcontrib>Bhatnagar, Divya</creatorcontrib><creatorcontrib>Brown, Dan P.</creatorcontrib><creatorcontrib>Murthy, N. Sanjeeva</creatorcontrib><creatorcontrib>Dutton, John</creatorcontrib><creatorcontrib>Browne, Kevin D.</creatorcontrib><creatorcontrib>Laimo, Franco A.</creatorcontrib><creatorcontrib>Ali, Zarina S.</creatorcontrib><creatorcontrib>Rosen, Joseph M.</creatorcontrib><creatorcontrib>Kaplan, Hilton M.</creatorcontrib><creatorcontrib>Kohn, Joachim</creatorcontrib><creatorcontrib>Cullen, D. Kacy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burrell, Justin C.</au><au>Bhatnagar, Divya</au><au>Brown, Dan P.</au><au>Murthy, N. Sanjeeva</au><au>Dutton, John</au><au>Browne, Kevin D.</au><au>Laimo, Franco A.</au><au>Ali, Zarina S.</au><au>Rosen, Joseph M.</au><au>Kaplan, Hilton M.</au><au>Kohn, Joachim</au><au>Cullen, D. Kacy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tyrosine‐derived polycarbonate nerve guidance tubes elicit proregenerative extracellular matrix deposition when used to bridge segmental nerve defects in swine</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2021-07</date><risdate>2021</risdate><volume>109</volume><issue>7</issue><spage>1183</spage><epage>1195</epage><pages>1183-1195</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Promising biomaterials should be tested in appropriate large animal models that recapitulate human inflammatory and regenerative responses. Previous studies have shown tyrosine‐derived polycarbonates (TyrPC) are versatile biomaterials with a wide range of applications across multiple disciplines. The library of TyrPC has been well studied and consists of thousands of polymer compositions with tunable mechanical characteristics and degradation and resorption rates that are useful for nerve guidance tubes (NGTs). NGTs made of different TyrPCs have been used in segmental nerve defect models in small animals. The current study is an extension of this work and evaluates NGTs made using two different TyrPC compositions in a 1 cm porcine peripheral nerve repair model. We first evaluated a nondegradable TyrPC formulation, demonstrating proof‐of‐concept chronic regenerative efficacy up to 6 months with similar nerve/muscle electrophysiology and morphometry to the autograft repair control. Next, we characterized the acute regenerative response using a degradable TyrPC formulation. After 2 weeks in vivo, TyrPC NGT promoted greater deposition of pro‐regenerative extracellular matrix (ECM) constituents (in particular collagen I, collagen III, collagen IV, laminin, and fibronectin) compared to commercially available collagen‐based NGTs. This corresponded with dense Schwann cell infiltration and axon extension across the lumen. These findings confirmed results reported previously in a mouse model and reveal that TyrPC NGTs were well tolerated in swine and facilitated host axon regeneration and Schwann cell infiltration in the acute phase across segmental defects ‐ likely by eliciting a favorable neurotrophic ECM milieu. This regenerative response ultimately can contribute to functional recovery.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>32985789</pmid><doi>10.1002/jbm.a.37110</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5355-5216</orcidid><orcidid>https://orcid.org/0000-0002-2324-5874</orcidid><orcidid>https://orcid.org/0000-0002-5361-9224</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2021-07, Vol.109 (7), p.1183-1195 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_2446988725 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animal models Animals autograft Biomaterials Biomedical materials Collagen Collagen (type I) Collagen (type III) Collagen (type IV) Composition Defects Deposition Electrophysiology Extracellular matrix Extracellular Matrix - metabolism extracellular matrix protein deposition Fibronectin Guided Tissue Regeneration - methods Infiltration Inflammation Laminin large animal Mechanical properties Morphometry Muscles nerve guidance tube Nerve Regeneration Peripheral Nerve Injuries - therapy peripheral nerve injury Peripheral nerves Peroneal Nerve - injuries Peroneal Nerve - metabolism Peroneal Nerve - physiology Polycarbonate Polycarbonate resins Polycarboxylate Cement - chemistry Polymers Recovery of function Regeneration Repair Schwann Cells - cytology Schwann Cells - metabolism Swine Tissue Scaffolds - chemistry Tubes Tyrosine Tyrosine - chemistry tyrosine‐derived polycarbonate |
title | Tyrosine‐derived polycarbonate nerve guidance tubes elicit proregenerative extracellular matrix deposition when used to bridge segmental nerve defects in swine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tyrosine%E2%80%90derived%20polycarbonate%20nerve%20guidance%20tubes%20elicit%20proregenerative%20extracellular%20matrix%20deposition%20when%20used%20to%20bridge%20segmental%20nerve%20defects%20in%20swine&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Burrell,%20Justin%20C.&rft.date=2021-07&rft.volume=109&rft.issue=7&rft.spage=1183&rft.epage=1195&rft.pages=1183-1195&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.37110&rft_dat=%3Cproquest_cross%3E2522394018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522394018&rft_id=info:pmid/32985789&rfr_iscdi=true |