Tyrosine‐derived polycarbonate nerve guidance tubes elicit proregenerative extracellular matrix deposition when used to bridge segmental nerve defects in swine

Promising biomaterials should be tested in appropriate large animal models that recapitulate human inflammatory and regenerative responses. Previous studies have shown tyrosine‐derived polycarbonates (TyrPC) are versatile biomaterials with a wide range of applications across multiple disciplines. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2021-07, Vol.109 (7), p.1183-1195
Hauptverfasser: Burrell, Justin C., Bhatnagar, Divya, Brown, Dan P., Murthy, N. Sanjeeva, Dutton, John, Browne, Kevin D., Laimo, Franco A., Ali, Zarina S., Rosen, Joseph M., Kaplan, Hilton M., Kohn, Joachim, Cullen, D. Kacy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1195
container_issue 7
container_start_page 1183
container_title Journal of biomedical materials research. Part A
container_volume 109
creator Burrell, Justin C.
Bhatnagar, Divya
Brown, Dan P.
Murthy, N. Sanjeeva
Dutton, John
Browne, Kevin D.
Laimo, Franco A.
Ali, Zarina S.
Rosen, Joseph M.
Kaplan, Hilton M.
Kohn, Joachim
Cullen, D. Kacy
description Promising biomaterials should be tested in appropriate large animal models that recapitulate human inflammatory and regenerative responses. Previous studies have shown tyrosine‐derived polycarbonates (TyrPC) are versatile biomaterials with a wide range of applications across multiple disciplines. The library of TyrPC has been well studied and consists of thousands of polymer compositions with tunable mechanical characteristics and degradation and resorption rates that are useful for nerve guidance tubes (NGTs). NGTs made of different TyrPCs have been used in segmental nerve defect models in small animals. The current study is an extension of this work and evaluates NGTs made using two different TyrPC compositions in a 1 cm porcine peripheral nerve repair model. We first evaluated a nondegradable TyrPC formulation, demonstrating proof‐of‐concept chronic regenerative efficacy up to 6 months with similar nerve/muscle electrophysiology and morphometry to the autograft repair control. Next, we characterized the acute regenerative response using a degradable TyrPC formulation. After 2 weeks in vivo, TyrPC NGT promoted greater deposition of pro‐regenerative extracellular matrix (ECM) constituents (in particular collagen I, collagen III, collagen IV, laminin, and fibronectin) compared to commercially available collagen‐based NGTs. This corresponded with dense Schwann cell infiltration and axon extension across the lumen. These findings confirmed results reported previously in a mouse model and reveal that TyrPC NGTs were well tolerated in swine and facilitated host axon regeneration and Schwann cell infiltration in the acute phase across segmental defects ‐ likely by eliciting a favorable neurotrophic ECM milieu. This regenerative response ultimately can contribute to functional recovery.
doi_str_mv 10.1002/jbm.a.37110
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2446988725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522394018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3490-445eadc0fe67888c7f6dd195cdab7fcb77e2639c34fa637369cae214627f08d63</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0Eon_gxB1Z4oJUZbGd2I6PbUWhqIhLOVuOPVm8SpzFdrrdWx-BV-DVeBK83YUDB04eWb_5vpn5EHpFyYISwt6tunFhFrWklDxBx5RzVjVK8Ke7ulFVzZQ4QicprQosCGfP0VH5a7ls1TH6ebuNU_IBfj38cBD9HTi8noatNbGbgsmAA8Q7wMvZOxMs4Dx3kDAM3vqM13GKsISCmFxaMdznaCwMwzyYiEeTo7_HDtbFIfsp4M03CHhOxSNPuIveLQEnWI4QshkOTg56sDlhH3DalMFeoGe9GRK8PLyn6OvV-9vLj9XNlw_Xl-c3la0bRaqm4WCcJT0I2batlb1wjipunelkbzspgYlaFbg3opa1UNYAo41gsietE_UpervXLUt9nyFlPfq028UEmOakWdMI1baS8YK--QddTXMMZTrNOGO1aghtC3W2p2y5cIrQ63X0o4lbTYneJadLctrox-QK_fqgOXcjuL_sn6gKwPbAxg-w_Z-W_nTx-Xyv-hsMFamk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522394018</pqid></control><display><type>article</type><title>Tyrosine‐derived polycarbonate nerve guidance tubes elicit proregenerative extracellular matrix deposition when used to bridge segmental nerve defects in swine</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Burrell, Justin C. ; Bhatnagar, Divya ; Brown, Dan P. ; Murthy, N. Sanjeeva ; Dutton, John ; Browne, Kevin D. ; Laimo, Franco A. ; Ali, Zarina S. ; Rosen, Joseph M. ; Kaplan, Hilton M. ; Kohn, Joachim ; Cullen, D. Kacy</creator><creatorcontrib>Burrell, Justin C. ; Bhatnagar, Divya ; Brown, Dan P. ; Murthy, N. Sanjeeva ; Dutton, John ; Browne, Kevin D. ; Laimo, Franco A. ; Ali, Zarina S. ; Rosen, Joseph M. ; Kaplan, Hilton M. ; Kohn, Joachim ; Cullen, D. Kacy</creatorcontrib><description>Promising biomaterials should be tested in appropriate large animal models that recapitulate human inflammatory and regenerative responses. Previous studies have shown tyrosine‐derived polycarbonates (TyrPC) are versatile biomaterials with a wide range of applications across multiple disciplines. The library of TyrPC has been well studied and consists of thousands of polymer compositions with tunable mechanical characteristics and degradation and resorption rates that are useful for nerve guidance tubes (NGTs). NGTs made of different TyrPCs have been used in segmental nerve defect models in small animals. The current study is an extension of this work and evaluates NGTs made using two different TyrPC compositions in a 1 cm porcine peripheral nerve repair model. We first evaluated a nondegradable TyrPC formulation, demonstrating proof‐of‐concept chronic regenerative efficacy up to 6 months with similar nerve/muscle electrophysiology and morphometry to the autograft repair control. Next, we characterized the acute regenerative response using a degradable TyrPC formulation. After 2 weeks in vivo, TyrPC NGT promoted greater deposition of pro‐regenerative extracellular matrix (ECM) constituents (in particular collagen I, collagen III, collagen IV, laminin, and fibronectin) compared to commercially available collagen‐based NGTs. This corresponded with dense Schwann cell infiltration and axon extension across the lumen. These findings confirmed results reported previously in a mouse model and reveal that TyrPC NGTs were well tolerated in swine and facilitated host axon regeneration and Schwann cell infiltration in the acute phase across segmental defects ‐ likely by eliciting a favorable neurotrophic ECM milieu. This regenerative response ultimately can contribute to functional recovery.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.37110</identifier><identifier>PMID: 32985789</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animal models ; Animals ; autograft ; Biomaterials ; Biomedical materials ; Collagen ; Collagen (type I) ; Collagen (type III) ; Collagen (type IV) ; Composition ; Defects ; Deposition ; Electrophysiology ; Extracellular matrix ; Extracellular Matrix - metabolism ; extracellular matrix protein deposition ; Fibronectin ; Guided Tissue Regeneration - methods ; Infiltration ; Inflammation ; Laminin ; large animal ; Mechanical properties ; Morphometry ; Muscles ; nerve guidance tube ; Nerve Regeneration ; Peripheral Nerve Injuries - therapy ; peripheral nerve injury ; Peripheral nerves ; Peroneal Nerve - injuries ; Peroneal Nerve - metabolism ; Peroneal Nerve - physiology ; Polycarbonate ; Polycarbonate resins ; Polycarboxylate Cement - chemistry ; Polymers ; Recovery of function ; Regeneration ; Repair ; Schwann Cells - cytology ; Schwann Cells - metabolism ; Swine ; Tissue Scaffolds - chemistry ; Tubes ; Tyrosine ; Tyrosine - chemistry ; tyrosine‐derived polycarbonate</subject><ispartof>Journal of biomedical materials research. Part A, 2021-07, Vol.109 (7), p.1183-1195</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2020 Wiley Periodicals LLC.</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3490-445eadc0fe67888c7f6dd195cdab7fcb77e2639c34fa637369cae214627f08d63</citedby><cites>FETCH-LOGICAL-c3490-445eadc0fe67888c7f6dd195cdab7fcb77e2639c34fa637369cae214627f08d63</cites><orcidid>0000-0002-5355-5216 ; 0000-0002-2324-5874 ; 0000-0002-5361-9224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.37110$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.37110$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32985789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burrell, Justin C.</creatorcontrib><creatorcontrib>Bhatnagar, Divya</creatorcontrib><creatorcontrib>Brown, Dan P.</creatorcontrib><creatorcontrib>Murthy, N. Sanjeeva</creatorcontrib><creatorcontrib>Dutton, John</creatorcontrib><creatorcontrib>Browne, Kevin D.</creatorcontrib><creatorcontrib>Laimo, Franco A.</creatorcontrib><creatorcontrib>Ali, Zarina S.</creatorcontrib><creatorcontrib>Rosen, Joseph M.</creatorcontrib><creatorcontrib>Kaplan, Hilton M.</creatorcontrib><creatorcontrib>Kohn, Joachim</creatorcontrib><creatorcontrib>Cullen, D. Kacy</creatorcontrib><title>Tyrosine‐derived polycarbonate nerve guidance tubes elicit proregenerative extracellular matrix deposition when used to bridge segmental nerve defects in swine</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Promising biomaterials should be tested in appropriate large animal models that recapitulate human inflammatory and regenerative responses. Previous studies have shown tyrosine‐derived polycarbonates (TyrPC) are versatile biomaterials with a wide range of applications across multiple disciplines. The library of TyrPC has been well studied and consists of thousands of polymer compositions with tunable mechanical characteristics and degradation and resorption rates that are useful for nerve guidance tubes (NGTs). NGTs made of different TyrPCs have been used in segmental nerve defect models in small animals. The current study is an extension of this work and evaluates NGTs made using two different TyrPC compositions in a 1 cm porcine peripheral nerve repair model. We first evaluated a nondegradable TyrPC formulation, demonstrating proof‐of‐concept chronic regenerative efficacy up to 6 months with similar nerve/muscle electrophysiology and morphometry to the autograft repair control. Next, we characterized the acute regenerative response using a degradable TyrPC formulation. After 2 weeks in vivo, TyrPC NGT promoted greater deposition of pro‐regenerative extracellular matrix (ECM) constituents (in particular collagen I, collagen III, collagen IV, laminin, and fibronectin) compared to commercially available collagen‐based NGTs. This corresponded with dense Schwann cell infiltration and axon extension across the lumen. These findings confirmed results reported previously in a mouse model and reveal that TyrPC NGTs were well tolerated in swine and facilitated host axon regeneration and Schwann cell infiltration in the acute phase across segmental defects ‐ likely by eliciting a favorable neurotrophic ECM milieu. This regenerative response ultimately can contribute to functional recovery.</description><subject>Animal models</subject><subject>Animals</subject><subject>autograft</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Collagen (type III)</subject><subject>Collagen (type IV)</subject><subject>Composition</subject><subject>Defects</subject><subject>Deposition</subject><subject>Electrophysiology</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - metabolism</subject><subject>extracellular matrix protein deposition</subject><subject>Fibronectin</subject><subject>Guided Tissue Regeneration - methods</subject><subject>Infiltration</subject><subject>Inflammation</subject><subject>Laminin</subject><subject>large animal</subject><subject>Mechanical properties</subject><subject>Morphometry</subject><subject>Muscles</subject><subject>nerve guidance tube</subject><subject>Nerve Regeneration</subject><subject>Peripheral Nerve Injuries - therapy</subject><subject>peripheral nerve injury</subject><subject>Peripheral nerves</subject><subject>Peroneal Nerve - injuries</subject><subject>Peroneal Nerve - metabolism</subject><subject>Peroneal Nerve - physiology</subject><subject>Polycarbonate</subject><subject>Polycarbonate resins</subject><subject>Polycarboxylate Cement - chemistry</subject><subject>Polymers</subject><subject>Recovery of function</subject><subject>Regeneration</subject><subject>Repair</subject><subject>Schwann Cells - cytology</subject><subject>Schwann Cells - metabolism</subject><subject>Swine</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Tubes</subject><subject>Tyrosine</subject><subject>Tyrosine - chemistry</subject><subject>tyrosine‐derived polycarbonate</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQxi0Eon_gxB1Z4oJUZbGd2I6PbUWhqIhLOVuOPVm8SpzFdrrdWx-BV-DVeBK83YUDB04eWb_5vpn5EHpFyYISwt6tunFhFrWklDxBx5RzVjVK8Ke7ulFVzZQ4QicprQosCGfP0VH5a7ls1TH6ebuNU_IBfj38cBD9HTi8noatNbGbgsmAA8Q7wMvZOxMs4Dx3kDAM3vqM13GKsISCmFxaMdznaCwMwzyYiEeTo7_HDtbFIfsp4M03CHhOxSNPuIveLQEnWI4QshkOTg56sDlhH3DalMFeoGe9GRK8PLyn6OvV-9vLj9XNlw_Xl-c3la0bRaqm4WCcJT0I2batlb1wjipunelkbzspgYlaFbg3opa1UNYAo41gsietE_UpervXLUt9nyFlPfq028UEmOakWdMI1baS8YK--QddTXMMZTrNOGO1aghtC3W2p2y5cIrQ63X0o4lbTYneJadLctrox-QK_fqgOXcjuL_sn6gKwPbAxg-w_Z-W_nTx-Xyv-hsMFamk</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Burrell, Justin C.</creator><creator>Bhatnagar, Divya</creator><creator>Brown, Dan P.</creator><creator>Murthy, N. Sanjeeva</creator><creator>Dutton, John</creator><creator>Browne, Kevin D.</creator><creator>Laimo, Franco A.</creator><creator>Ali, Zarina S.</creator><creator>Rosen, Joseph M.</creator><creator>Kaplan, Hilton M.</creator><creator>Kohn, Joachim</creator><creator>Cullen, D. Kacy</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5355-5216</orcidid><orcidid>https://orcid.org/0000-0002-2324-5874</orcidid><orcidid>https://orcid.org/0000-0002-5361-9224</orcidid></search><sort><creationdate>202107</creationdate><title>Tyrosine‐derived polycarbonate nerve guidance tubes elicit proregenerative extracellular matrix deposition when used to bridge segmental nerve defects in swine</title><author>Burrell, Justin C. ; Bhatnagar, Divya ; Brown, Dan P. ; Murthy, N. Sanjeeva ; Dutton, John ; Browne, Kevin D. ; Laimo, Franco A. ; Ali, Zarina S. ; Rosen, Joseph M. ; Kaplan, Hilton M. ; Kohn, Joachim ; Cullen, D. Kacy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3490-445eadc0fe67888c7f6dd195cdab7fcb77e2639c34fa637369cae214627f08d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>autograft</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Collagen (type III)</topic><topic>Collagen (type IV)</topic><topic>Composition</topic><topic>Defects</topic><topic>Deposition</topic><topic>Electrophysiology</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - metabolism</topic><topic>extracellular matrix protein deposition</topic><topic>Fibronectin</topic><topic>Guided Tissue Regeneration - methods</topic><topic>Infiltration</topic><topic>Inflammation</topic><topic>Laminin</topic><topic>large animal</topic><topic>Mechanical properties</topic><topic>Morphometry</topic><topic>Muscles</topic><topic>nerve guidance tube</topic><topic>Nerve Regeneration</topic><topic>Peripheral Nerve Injuries - therapy</topic><topic>peripheral nerve injury</topic><topic>Peripheral nerves</topic><topic>Peroneal Nerve - injuries</topic><topic>Peroneal Nerve - metabolism</topic><topic>Peroneal Nerve - physiology</topic><topic>Polycarbonate</topic><topic>Polycarbonate resins</topic><topic>Polycarboxylate Cement - chemistry</topic><topic>Polymers</topic><topic>Recovery of function</topic><topic>Regeneration</topic><topic>Repair</topic><topic>Schwann Cells - cytology</topic><topic>Schwann Cells - metabolism</topic><topic>Swine</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Tubes</topic><topic>Tyrosine</topic><topic>Tyrosine - chemistry</topic><topic>tyrosine‐derived polycarbonate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burrell, Justin C.</creatorcontrib><creatorcontrib>Bhatnagar, Divya</creatorcontrib><creatorcontrib>Brown, Dan P.</creatorcontrib><creatorcontrib>Murthy, N. Sanjeeva</creatorcontrib><creatorcontrib>Dutton, John</creatorcontrib><creatorcontrib>Browne, Kevin D.</creatorcontrib><creatorcontrib>Laimo, Franco A.</creatorcontrib><creatorcontrib>Ali, Zarina S.</creatorcontrib><creatorcontrib>Rosen, Joseph M.</creatorcontrib><creatorcontrib>Kaplan, Hilton M.</creatorcontrib><creatorcontrib>Kohn, Joachim</creatorcontrib><creatorcontrib>Cullen, D. Kacy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burrell, Justin C.</au><au>Bhatnagar, Divya</au><au>Brown, Dan P.</au><au>Murthy, N. Sanjeeva</au><au>Dutton, John</au><au>Browne, Kevin D.</au><au>Laimo, Franco A.</au><au>Ali, Zarina S.</au><au>Rosen, Joseph M.</au><au>Kaplan, Hilton M.</au><au>Kohn, Joachim</au><au>Cullen, D. Kacy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tyrosine‐derived polycarbonate nerve guidance tubes elicit proregenerative extracellular matrix deposition when used to bridge segmental nerve defects in swine</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2021-07</date><risdate>2021</risdate><volume>109</volume><issue>7</issue><spage>1183</spage><epage>1195</epage><pages>1183-1195</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Promising biomaterials should be tested in appropriate large animal models that recapitulate human inflammatory and regenerative responses. Previous studies have shown tyrosine‐derived polycarbonates (TyrPC) are versatile biomaterials with a wide range of applications across multiple disciplines. The library of TyrPC has been well studied and consists of thousands of polymer compositions with tunable mechanical characteristics and degradation and resorption rates that are useful for nerve guidance tubes (NGTs). NGTs made of different TyrPCs have been used in segmental nerve defect models in small animals. The current study is an extension of this work and evaluates NGTs made using two different TyrPC compositions in a 1 cm porcine peripheral nerve repair model. We first evaluated a nondegradable TyrPC formulation, demonstrating proof‐of‐concept chronic regenerative efficacy up to 6 months with similar nerve/muscle electrophysiology and morphometry to the autograft repair control. Next, we characterized the acute regenerative response using a degradable TyrPC formulation. After 2 weeks in vivo, TyrPC NGT promoted greater deposition of pro‐regenerative extracellular matrix (ECM) constituents (in particular collagen I, collagen III, collagen IV, laminin, and fibronectin) compared to commercially available collagen‐based NGTs. This corresponded with dense Schwann cell infiltration and axon extension across the lumen. These findings confirmed results reported previously in a mouse model and reveal that TyrPC NGTs were well tolerated in swine and facilitated host axon regeneration and Schwann cell infiltration in the acute phase across segmental defects ‐ likely by eliciting a favorable neurotrophic ECM milieu. This regenerative response ultimately can contribute to functional recovery.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32985789</pmid><doi>10.1002/jbm.a.37110</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5355-5216</orcidid><orcidid>https://orcid.org/0000-0002-2324-5874</orcidid><orcidid>https://orcid.org/0000-0002-5361-9224</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2021-07, Vol.109 (7), p.1183-1195
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_2446988725
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animal models
Animals
autograft
Biomaterials
Biomedical materials
Collagen
Collagen (type I)
Collagen (type III)
Collagen (type IV)
Composition
Defects
Deposition
Electrophysiology
Extracellular matrix
Extracellular Matrix - metabolism
extracellular matrix protein deposition
Fibronectin
Guided Tissue Regeneration - methods
Infiltration
Inflammation
Laminin
large animal
Mechanical properties
Morphometry
Muscles
nerve guidance tube
Nerve Regeneration
Peripheral Nerve Injuries - therapy
peripheral nerve injury
Peripheral nerves
Peroneal Nerve - injuries
Peroneal Nerve - metabolism
Peroneal Nerve - physiology
Polycarbonate
Polycarbonate resins
Polycarboxylate Cement - chemistry
Polymers
Recovery of function
Regeneration
Repair
Schwann Cells - cytology
Schwann Cells - metabolism
Swine
Tissue Scaffolds - chemistry
Tubes
Tyrosine
Tyrosine - chemistry
tyrosine‐derived polycarbonate
title Tyrosine‐derived polycarbonate nerve guidance tubes elicit proregenerative extracellular matrix deposition when used to bridge segmental nerve defects in swine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tyrosine%E2%80%90derived%20polycarbonate%20nerve%20guidance%20tubes%20elicit%20proregenerative%20extracellular%20matrix%20deposition%20when%20used%20to%20bridge%20segmental%20nerve%20defects%20in%20swine&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Burrell,%20Justin%20C.&rft.date=2021-07&rft.volume=109&rft.issue=7&rft.spage=1183&rft.epage=1195&rft.pages=1183-1195&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.37110&rft_dat=%3Cproquest_cross%3E2522394018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522394018&rft_id=info:pmid/32985789&rfr_iscdi=true