Specific recognition of cationic paraquat in environmental water and vegetable samples by molecularly imprinted stir-bar sorptive extraction based on monohydroxylcucurbit[7]uril–paraquat inclusion complex

Molecularly imprinted stir-bar coatings were created based on a hydroxylcucurbit[7]uril–paraquat inclusion complex. The inclusion complex that contained paraquat (PQ) as a template and monohydroxylcucurbit[7]uril ((OH)Q[7]) as a monomer was preassembled mainly through cavity inclusion interaction of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mikrochimica acta (1966) 2020-10, Vol.187 (10), p.578-578, Article 578
Hauptverfasser: Yao, Jianmei, Zhang, Lingxue, Ran, Jinfeng, Wang, Shasha, Dong, Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecularly imprinted stir-bar coatings were created based on a hydroxylcucurbit[7]uril–paraquat inclusion complex. The inclusion complex that contained paraquat (PQ) as a template and monohydroxylcucurbit[7]uril ((OH)Q[7]) as a monomer was preassembled mainly through cavity inclusion interaction of (OH)Q[7] to form a one-dimensional self-assembly structure. The inclusion complex was anchored chemically on the surface of a glass stir bar with hydroxy-terminated poly(dimethylsiloxane) by the sol–gel technique to obtain a molecularly imprinted polymer-coated stir bar (MIP-SB). The molecularly imprinted coating showed specific adsorption for cationic PQ in aqueous media. Other quaternary amine compounds with a similar structure that coexisted in the solution, such as ethyl-viologen, diquat, and difenzoquat, were almost not extracted by the prepared MIP-SB. The sorptive capacity of the MIP-SB for PQ was nearly four times that of the non-imprinted stir bar (NIP-SB). The recognition mechanism indicated that the selectivity and extraction capacity resulted mainly from the imprinted cavity in the polymer that was formed by a one-dimensional assembly structure consisting of the (OH)Q[7]–PQ inclusion complex. The imprinted cavity was complementary to the PQ in shape, size, and functionality. A method to determine PQ in environmental water and vegetable samples was developed by combining MIP-SB sorptive extraction with HPLC-UV. The linear range was from 100 to 10,000 ng L −1 with a 8.2 ng L −1 detection limit for water samples and 0.02–0.85 mg kg −1 with a 0.005 mg kg −1 detection limit for vegetable samples. The limit of detection for both samples was lower than the EU-established maximum residual levels and that of other previously reported methods. The average recoveries were 70.0–96.1% with a relative standard deviation ≤ 7.6%, which showed the successful application in real sample analysis. Molecularly imprinted stir-bar coatings were created based on a hydroxylcucurbit[7]uril–paraquat (PQ) inclusion complex, which showed a specific recognition toward cationic PQ. A method to determine PQ in environmental water and vegetable samples was established by combining MIP-SB sorptive extraction with HPLC-UV.
ISSN:0026-3672
1436-5073
DOI:10.1007/s00604-020-04491-5