Relative efficiency of equal versus unequal cluster sizes in cluster randomized trials with a small number of clusters

To calculate sample sizes in cluster randomized trials (CRTs), the cluster sizes are usually assumed to be identical across all clusters for simplicity. However, equal cluster sizes are not guaranteed in practice, especially when the number of clusters is limited. Therefore, it is important to under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biopharmaceutical statistics 2021-03, Vol.31 (2), p.191-206
Hauptverfasser: Liu, Jingxia, Xiong, Chengjie, Liu, Lei, Wang, Guoqiao, Jingqin, Luo, Gao, Feng, Chen, Ling, Li, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206
container_issue 2
container_start_page 191
container_title Journal of biopharmaceutical statistics
container_volume 31
creator Liu, Jingxia
Xiong, Chengjie
Liu, Lei
Wang, Guoqiao
Jingqin, Luo
Gao, Feng
Chen, Ling
Li, Yan
description To calculate sample sizes in cluster randomized trials (CRTs), the cluster sizes are usually assumed to be identical across all clusters for simplicity. However, equal cluster sizes are not guaranteed in practice, especially when the number of clusters is limited. Therefore, it is important to understand the relative efficiency (RE) of equal versus unequal cluster sizes when designing CRTs with a limited number of clusters. In this paper, we are interested in the RE of two bias-corrected sandwich estimators of the treatment effect in the Generalized Estimating Equation (GEE) models for CRTs with a small number of clusters. Specifically, we derive the RE of two bias-corrected sandwich estimators for binary, continuous, or count data in CRTs under the assumption of an exchangeable working correlation structure. We consider different scenarios of cluster size distributions and investigate RE performance through simulation studies. We conclude that the number of clusters could be increased by as much as 42% to compensate for efficiency loss due to unequal cluster sizes. Finally, we propose an algorithm of increasing the number of clusters when the coefficient of variation of cluster sizes is known and unknown.
doi_str_mv 10.1080/10543406.2020.1814795
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2446667770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087511581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-d539abf4f640fdd25d278be8687be1f5bf6ee6b8190efa1bf90e33d5f9a32e973</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhgdRbK3-BCXgxs3UfCezEUvxCwqC6DpkZk5sSiZpk8kt119vLvf2oi5cneTNc96cw9t1Lwk-J1jjtwQLzjiW5xTTJmnC1SAedadEUNwLRcjjdm5Mv4NOumel3GBMhNL8aXfC6KCwoPS023yDYFe_AQTO-clDnLYoOQR31Qa0gVxqQTXur1OoZYWMiv8FBfl4FLKNc1qaOqM1exsKuvfrNbKoLDYEFOsyNqrZHhrK8-6Jaxi8ONSz7sfHD98vP_dXXz99uby46ic-yLWfBRvs6LiTHLt5pmKmSo-gpVYjECdGJwHkqMmAwVkyulYZm4UbLKMwKHbWvdv73tZxgXmCuGYbzG32i81bk6w3f79Ef21-po3RinHOWDN4czDI6a5CWc3iywQh2AipFkM5l1IqpXBDX_-D3qSaY1vPMKyVIERo0iixp6acSsngjsMQbHbJmodkzS5Zc0i29b36c5Nj10OUDXi_B3x0KS_2PuUwm9VuQ8quBTT5Nsf___gNRs22Pw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087511581</pqid></control><display><type>article</type><title>Relative efficiency of equal versus unequal cluster sizes in cluster randomized trials with a small number of clusters</title><source>MEDLINE</source><source>EBSCOhost Business Source Complete</source><creator>Liu, Jingxia ; Xiong, Chengjie ; Liu, Lei ; Wang, Guoqiao ; Jingqin, Luo ; Gao, Feng ; Chen, Ling ; Li, Yan</creator><creatorcontrib>Liu, Jingxia ; Xiong, Chengjie ; Liu, Lei ; Wang, Guoqiao ; Jingqin, Luo ; Gao, Feng ; Chen, Ling ; Li, Yan</creatorcontrib><description>To calculate sample sizes in cluster randomized trials (CRTs), the cluster sizes are usually assumed to be identical across all clusters for simplicity. However, equal cluster sizes are not guaranteed in practice, especially when the number of clusters is limited. Therefore, it is important to understand the relative efficiency (RE) of equal versus unequal cluster sizes when designing CRTs with a limited number of clusters. In this paper, we are interested in the RE of two bias-corrected sandwich estimators of the treatment effect in the Generalized Estimating Equation (GEE) models for CRTs with a small number of clusters. Specifically, we derive the RE of two bias-corrected sandwich estimators for binary, continuous, or count data in CRTs under the assumption of an exchangeable working correlation structure. We consider different scenarios of cluster size distributions and investigate RE performance through simulation studies. We conclude that the number of clusters could be increased by as much as 42% to compensate for efficiency loss due to unequal cluster sizes. Finally, we propose an algorithm of increasing the number of clusters when the coefficient of variation of cluster sizes is known and unknown.</description><identifier>ISSN: 1054-3406</identifier><identifier>EISSN: 1520-5711</identifier><identifier>DOI: 10.1080/10543406.2020.1814795</identifier><identifier>PMID: 32970522</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Bias ; Bias-corrected sandwich estimator ; Cluster Analysis ; cluster randomized trial (CRT) ; Computer Simulation ; Efficiency ; generalized estimating equation (GEE) ; Humans ; intracluster correlation coefficient (ICC) ; Randomized Controlled Trials as Topic ; relative efficiency (RE) ; Sample Size</subject><ispartof>Journal of biopharmaceutical statistics, 2021-03, Vol.31 (2), p.191-206</ispartof><rights>2020 Taylor &amp; Francis Group, LLC 2020</rights><rights>2020 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-d539abf4f640fdd25d278be8687be1f5bf6ee6b8190efa1bf90e33d5f9a32e973</citedby><cites>FETCH-LOGICAL-c496t-d539abf4f640fdd25d278be8687be1f5bf6ee6b8190efa1bf90e33d5f9a32e973</cites><orcidid>0000-0002-9434-7907 ; 0000-0002-1425-1623 ; 0000-0003-0238-1831 ; 0000-0003-1340-6694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32970522$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jingxia</creatorcontrib><creatorcontrib>Xiong, Chengjie</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Wang, Guoqiao</creatorcontrib><creatorcontrib>Jingqin, Luo</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Chen, Ling</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><title>Relative efficiency of equal versus unequal cluster sizes in cluster randomized trials with a small number of clusters</title><title>Journal of biopharmaceutical statistics</title><addtitle>J Biopharm Stat</addtitle><description>To calculate sample sizes in cluster randomized trials (CRTs), the cluster sizes are usually assumed to be identical across all clusters for simplicity. However, equal cluster sizes are not guaranteed in practice, especially when the number of clusters is limited. Therefore, it is important to understand the relative efficiency (RE) of equal versus unequal cluster sizes when designing CRTs with a limited number of clusters. In this paper, we are interested in the RE of two bias-corrected sandwich estimators of the treatment effect in the Generalized Estimating Equation (GEE) models for CRTs with a small number of clusters. Specifically, we derive the RE of two bias-corrected sandwich estimators for binary, continuous, or count data in CRTs under the assumption of an exchangeable working correlation structure. We consider different scenarios of cluster size distributions and investigate RE performance through simulation studies. We conclude that the number of clusters could be increased by as much as 42% to compensate for efficiency loss due to unequal cluster sizes. Finally, we propose an algorithm of increasing the number of clusters when the coefficient of variation of cluster sizes is known and unknown.</description><subject>Bias</subject><subject>Bias-corrected sandwich estimator</subject><subject>Cluster Analysis</subject><subject>cluster randomized trial (CRT)</subject><subject>Computer Simulation</subject><subject>Efficiency</subject><subject>generalized estimating equation (GEE)</subject><subject>Humans</subject><subject>intracluster correlation coefficient (ICC)</subject><subject>Randomized Controlled Trials as Topic</subject><subject>relative efficiency (RE)</subject><subject>Sample Size</subject><issn>1054-3406</issn><issn>1520-5711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1rFTEUhgdRbK3-BCXgxs3UfCezEUvxCwqC6DpkZk5sSiZpk8kt119vLvf2oi5cneTNc96cw9t1Lwk-J1jjtwQLzjiW5xTTJmnC1SAedadEUNwLRcjjdm5Mv4NOumel3GBMhNL8aXfC6KCwoPS023yDYFe_AQTO-clDnLYoOQR31Qa0gVxqQTXur1OoZYWMiv8FBfl4FLKNc1qaOqM1exsKuvfrNbKoLDYEFOsyNqrZHhrK8-6Jaxi8ONSz7sfHD98vP_dXXz99uby46ic-yLWfBRvs6LiTHLt5pmKmSo-gpVYjECdGJwHkqMmAwVkyulYZm4UbLKMwKHbWvdv73tZxgXmCuGYbzG32i81bk6w3f79Ef21-po3RinHOWDN4czDI6a5CWc3iywQh2AipFkM5l1IqpXBDX_-D3qSaY1vPMKyVIERo0iixp6acSsngjsMQbHbJmodkzS5Zc0i29b36c5Nj10OUDXi_B3x0KS_2PuUwm9VuQ8quBTT5Nsf___gNRs22Pw</recordid><startdate>20210304</startdate><enddate>20210304</enddate><creator>Liu, Jingxia</creator><creator>Xiong, Chengjie</creator><creator>Liu, Lei</creator><creator>Wang, Guoqiao</creator><creator>Jingqin, Luo</creator><creator>Gao, Feng</creator><creator>Chen, Ling</creator><creator>Li, Yan</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9434-7907</orcidid><orcidid>https://orcid.org/0000-0002-1425-1623</orcidid><orcidid>https://orcid.org/0000-0003-0238-1831</orcidid><orcidid>https://orcid.org/0000-0003-1340-6694</orcidid></search><sort><creationdate>20210304</creationdate><title>Relative efficiency of equal versus unequal cluster sizes in cluster randomized trials with a small number of clusters</title><author>Liu, Jingxia ; Xiong, Chengjie ; Liu, Lei ; Wang, Guoqiao ; Jingqin, Luo ; Gao, Feng ; Chen, Ling ; Li, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-d539abf4f640fdd25d278be8687be1f5bf6ee6b8190efa1bf90e33d5f9a32e973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bias</topic><topic>Bias-corrected sandwich estimator</topic><topic>Cluster Analysis</topic><topic>cluster randomized trial (CRT)</topic><topic>Computer Simulation</topic><topic>Efficiency</topic><topic>generalized estimating equation (GEE)</topic><topic>Humans</topic><topic>intracluster correlation coefficient (ICC)</topic><topic>Randomized Controlled Trials as Topic</topic><topic>relative efficiency (RE)</topic><topic>Sample Size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jingxia</creatorcontrib><creatorcontrib>Xiong, Chengjie</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Wang, Guoqiao</creatorcontrib><creatorcontrib>Jingqin, Luo</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Chen, Ling</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biopharmaceutical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jingxia</au><au>Xiong, Chengjie</au><au>Liu, Lei</au><au>Wang, Guoqiao</au><au>Jingqin, Luo</au><au>Gao, Feng</au><au>Chen, Ling</au><au>Li, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relative efficiency of equal versus unequal cluster sizes in cluster randomized trials with a small number of clusters</atitle><jtitle>Journal of biopharmaceutical statistics</jtitle><addtitle>J Biopharm Stat</addtitle><date>2021-03-04</date><risdate>2021</risdate><volume>31</volume><issue>2</issue><spage>191</spage><epage>206</epage><pages>191-206</pages><issn>1054-3406</issn><eissn>1520-5711</eissn><abstract>To calculate sample sizes in cluster randomized trials (CRTs), the cluster sizes are usually assumed to be identical across all clusters for simplicity. However, equal cluster sizes are not guaranteed in practice, especially when the number of clusters is limited. Therefore, it is important to understand the relative efficiency (RE) of equal versus unequal cluster sizes when designing CRTs with a limited number of clusters. In this paper, we are interested in the RE of two bias-corrected sandwich estimators of the treatment effect in the Generalized Estimating Equation (GEE) models for CRTs with a small number of clusters. Specifically, we derive the RE of two bias-corrected sandwich estimators for binary, continuous, or count data in CRTs under the assumption of an exchangeable working correlation structure. We consider different scenarios of cluster size distributions and investigate RE performance through simulation studies. We conclude that the number of clusters could be increased by as much as 42% to compensate for efficiency loss due to unequal cluster sizes. Finally, we propose an algorithm of increasing the number of clusters when the coefficient of variation of cluster sizes is known and unknown.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>32970522</pmid><doi>10.1080/10543406.2020.1814795</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9434-7907</orcidid><orcidid>https://orcid.org/0000-0002-1425-1623</orcidid><orcidid>https://orcid.org/0000-0003-0238-1831</orcidid><orcidid>https://orcid.org/0000-0003-1340-6694</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-3406
ispartof Journal of biopharmaceutical statistics, 2021-03, Vol.31 (2), p.191-206
issn 1054-3406
1520-5711
language eng
recordid cdi_proquest_miscellaneous_2446667770
source MEDLINE; EBSCOhost Business Source Complete
subjects Bias
Bias-corrected sandwich estimator
Cluster Analysis
cluster randomized trial (CRT)
Computer Simulation
Efficiency
generalized estimating equation (GEE)
Humans
intracluster correlation coefficient (ICC)
Randomized Controlled Trials as Topic
relative efficiency (RE)
Sample Size
title Relative efficiency of equal versus unequal cluster sizes in cluster randomized trials with a small number of clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relative%20efficiency%20of%20equal%20versus%20unequal%20cluster%20sizes%20in%20cluster%20randomized%20trials%20with%20a%20small%20number%20of%20clusters&rft.jtitle=Journal%20of%20biopharmaceutical%20statistics&rft.au=Liu,%20Jingxia&rft.date=2021-03-04&rft.volume=31&rft.issue=2&rft.spage=191&rft.epage=206&rft.pages=191-206&rft.issn=1054-3406&rft.eissn=1520-5711&rft_id=info:doi/10.1080/10543406.2020.1814795&rft_dat=%3Cproquest_pubme%3E3087511581%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087511581&rft_id=info:pmid/32970522&rfr_iscdi=true