Cooling of a Zero-Nuclear-Spin Molecular Ion to a Selected Rotational State
We demonstrate rotational cooling of the silicon monoxide cation via optical pumping by a spectrally filtered broadband laser. Compared with diatomic hydrides, SiO+ is more challenging to cool because of its smaller rotational interval. However, the rotational level spacing and the large dipole mome...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-09, Vol.125 (11), p.1-113201, Article 113201 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113201 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | Physical review letters |
container_volume | 125 |
creator | Stollenwerk, Patrick R. Antonov, Ivan O. Venkataramanababu, Sruthi Lin, Yen-Wei Odom, Brian C. |
description | We demonstrate rotational cooling of the silicon monoxide cation via optical pumping by a spectrally filtered broadband laser. Compared with diatomic hydrides, SiO+ is more challenging to cool because of its smaller rotational interval. However, the rotational level spacing and the large dipole moment of SiO+ allows for direct manipulation by microwaves, and the absence of hyperfine structure in its dominant isotopologue greatly reduces demands for pure quantum state preparation. These features make Si28O+16 a good candidate for future applications such as quantum information processing. Cooling to the ground rotational state is achieved on a 100 ms timescale and attains a population of 94(3)%, with an equivalent temperature T=0.53(6) K. We also describe a novel spectral-filtering approach to cool into arbitrary rotational states and use it to demonstrate a narrow rotational population distribution (N±1) around a selected state. |
doi_str_mv | 10.1103/PhysRevLett.125.113201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2446660873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2446660873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a5c482b25bfd02b9b750344dcaf06ec526df27b4c0ccad4e889e32e1c99ac59d3</originalsourceid><addsrcrecordid>eNpdkEtLxDAUhYMoOI7-BSm4cdPx5tG0XcrgY3B8MKMbNyFNb7VDbMYkFebfW6kLcXUuh4_L4SPklMKMUuAXT--7sMKvJcY4oywbSs6A7pEJhbxMc0rFPpkAcJqWAPkhOQphAwCUyWJC7ubO2bZ7S1yT6OQVvUsfemNR-3S9bbvk3lk0vdU-WbguiW6A1jhUEetk5aKOreu0TdbDhcfkoNE24MlvTsnL9dXz_DZdPt4s5pfL1HAqY6ozIwpWsaxqamBVWeUZcCFqoxuQaDIm64bllTBgjK4FFkWJnCE1ZalNVtZ8Ss7Hv1vvPnsMUX20waC1ukPXB8WEkFJCkfMBPfuHblzvh8UjxUpBeT5QcqSMdyF4bNTWtx_a7xQF9eNY_XGsBsdqdMy_AR7vceA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446294137</pqid></control><display><type>article</type><title>Cooling of a Zero-Nuclear-Spin Molecular Ion to a Selected Rotational State</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Stollenwerk, Patrick R. ; Antonov, Ivan O. ; Venkataramanababu, Sruthi ; Lin, Yen-Wei ; Odom, Brian C.</creator><creatorcontrib>Stollenwerk, Patrick R. ; Antonov, Ivan O. ; Venkataramanababu, Sruthi ; Lin, Yen-Wei ; Odom, Brian C.</creatorcontrib><description>We demonstrate rotational cooling of the silicon monoxide cation via optical pumping by a spectrally filtered broadband laser. Compared with diatomic hydrides, SiO+ is more challenging to cool because of its smaller rotational interval. However, the rotational level spacing and the large dipole moment of SiO+ allows for direct manipulation by microwaves, and the absence of hyperfine structure in its dominant isotopologue greatly reduces demands for pure quantum state preparation. These features make Si28O+16 a good candidate for future applications such as quantum information processing. Cooling to the ground rotational state is achieved on a 100 ms timescale and attains a population of 94(3)%, with an equivalent temperature T=0.53(6) K. We also describe a novel spectral-filtering approach to cool into arbitrary rotational states and use it to demonstrate a narrow rotational population distribution (N±1) around a selected state.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.125.113201</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Broadband ; Cooling ; Data processing ; Dipole moments ; Hyperfine structure ; Microwaves ; Molecular ions ; Optical pumping ; Population distribution ; Quantum phenomena ; Rotational spectra ; Rotational states</subject><ispartof>Physical review letters, 2020-09, Vol.125 (11), p.1-113201, Article 113201</ispartof><rights>Copyright American Physical Society Sep 11, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a5c482b25bfd02b9b750344dcaf06ec526df27b4c0ccad4e889e32e1c99ac59d3</citedby><cites>FETCH-LOGICAL-c316t-a5c482b25bfd02b9b750344dcaf06ec526df27b4c0ccad4e889e32e1c99ac59d3</cites><orcidid>0000-0002-5435-108X ; 0000-0001-7659-8713 ; 0000-0002-3992-8864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Stollenwerk, Patrick R.</creatorcontrib><creatorcontrib>Antonov, Ivan O.</creatorcontrib><creatorcontrib>Venkataramanababu, Sruthi</creatorcontrib><creatorcontrib>Lin, Yen-Wei</creatorcontrib><creatorcontrib>Odom, Brian C.</creatorcontrib><title>Cooling of a Zero-Nuclear-Spin Molecular Ion to a Selected Rotational State</title><title>Physical review letters</title><description>We demonstrate rotational cooling of the silicon monoxide cation via optical pumping by a spectrally filtered broadband laser. Compared with diatomic hydrides, SiO+ is more challenging to cool because of its smaller rotational interval. However, the rotational level spacing and the large dipole moment of SiO+ allows for direct manipulation by microwaves, and the absence of hyperfine structure in its dominant isotopologue greatly reduces demands for pure quantum state preparation. These features make Si28O+16 a good candidate for future applications such as quantum information processing. Cooling to the ground rotational state is achieved on a 100 ms timescale and attains a population of 94(3)%, with an equivalent temperature T=0.53(6) K. We also describe a novel spectral-filtering approach to cool into arbitrary rotational states and use it to demonstrate a narrow rotational population distribution (N±1) around a selected state.</description><subject>Broadband</subject><subject>Cooling</subject><subject>Data processing</subject><subject>Dipole moments</subject><subject>Hyperfine structure</subject><subject>Microwaves</subject><subject>Molecular ions</subject><subject>Optical pumping</subject><subject>Population distribution</subject><subject>Quantum phenomena</subject><subject>Rotational spectra</subject><subject>Rotational states</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLxDAUhYMoOI7-BSm4cdPx5tG0XcrgY3B8MKMbNyFNb7VDbMYkFebfW6kLcXUuh4_L4SPklMKMUuAXT--7sMKvJcY4oywbSs6A7pEJhbxMc0rFPpkAcJqWAPkhOQphAwCUyWJC7ubO2bZ7S1yT6OQVvUsfemNR-3S9bbvk3lk0vdU-WbguiW6A1jhUEetk5aKOreu0TdbDhcfkoNE24MlvTsnL9dXz_DZdPt4s5pfL1HAqY6ozIwpWsaxqamBVWeUZcCFqoxuQaDIm64bllTBgjK4FFkWJnCE1ZalNVtZ8Ss7Hv1vvPnsMUX20waC1ukPXB8WEkFJCkfMBPfuHblzvh8UjxUpBeT5QcqSMdyF4bNTWtx_a7xQF9eNY_XGsBsdqdMy_AR7vceA</recordid><startdate>20200911</startdate><enddate>20200911</enddate><creator>Stollenwerk, Patrick R.</creator><creator>Antonov, Ivan O.</creator><creator>Venkataramanababu, Sruthi</creator><creator>Lin, Yen-Wei</creator><creator>Odom, Brian C.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5435-108X</orcidid><orcidid>https://orcid.org/0000-0001-7659-8713</orcidid><orcidid>https://orcid.org/0000-0002-3992-8864</orcidid></search><sort><creationdate>20200911</creationdate><title>Cooling of a Zero-Nuclear-Spin Molecular Ion to a Selected Rotational State</title><author>Stollenwerk, Patrick R. ; Antonov, Ivan O. ; Venkataramanababu, Sruthi ; Lin, Yen-Wei ; Odom, Brian C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a5c482b25bfd02b9b750344dcaf06ec526df27b4c0ccad4e889e32e1c99ac59d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Broadband</topic><topic>Cooling</topic><topic>Data processing</topic><topic>Dipole moments</topic><topic>Hyperfine structure</topic><topic>Microwaves</topic><topic>Molecular ions</topic><topic>Optical pumping</topic><topic>Population distribution</topic><topic>Quantum phenomena</topic><topic>Rotational spectra</topic><topic>Rotational states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stollenwerk, Patrick R.</creatorcontrib><creatorcontrib>Antonov, Ivan O.</creatorcontrib><creatorcontrib>Venkataramanababu, Sruthi</creatorcontrib><creatorcontrib>Lin, Yen-Wei</creatorcontrib><creatorcontrib>Odom, Brian C.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stollenwerk, Patrick R.</au><au>Antonov, Ivan O.</au><au>Venkataramanababu, Sruthi</au><au>Lin, Yen-Wei</au><au>Odom, Brian C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooling of a Zero-Nuclear-Spin Molecular Ion to a Selected Rotational State</atitle><jtitle>Physical review letters</jtitle><date>2020-09-11</date><risdate>2020</risdate><volume>125</volume><issue>11</issue><spage>1</spage><epage>113201</epage><pages>1-113201</pages><artnum>113201</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We demonstrate rotational cooling of the silicon monoxide cation via optical pumping by a spectrally filtered broadband laser. Compared with diatomic hydrides, SiO+ is more challenging to cool because of its smaller rotational interval. However, the rotational level spacing and the large dipole moment of SiO+ allows for direct manipulation by microwaves, and the absence of hyperfine structure in its dominant isotopologue greatly reduces demands for pure quantum state preparation. These features make Si28O+16 a good candidate for future applications such as quantum information processing. Cooling to the ground rotational state is achieved on a 100 ms timescale and attains a population of 94(3)%, with an equivalent temperature T=0.53(6) K. We also describe a novel spectral-filtering approach to cool into arbitrary rotational states and use it to demonstrate a narrow rotational population distribution (N±1) around a selected state.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.125.113201</doi><orcidid>https://orcid.org/0000-0002-5435-108X</orcidid><orcidid>https://orcid.org/0000-0001-7659-8713</orcidid><orcidid>https://orcid.org/0000-0002-3992-8864</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2020-09, Vol.125 (11), p.1-113201, Article 113201 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2446660873 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Broadband Cooling Data processing Dipole moments Hyperfine structure Microwaves Molecular ions Optical pumping Population distribution Quantum phenomena Rotational spectra Rotational states |
title | Cooling of a Zero-Nuclear-Spin Molecular Ion to a Selected Rotational State |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A49%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooling%20of%20a%20Zero-Nuclear-Spin%20Molecular%20Ion%20to%20a%20Selected%20Rotational%20State&rft.jtitle=Physical%20review%20letters&rft.au=Stollenwerk,%20Patrick%20R.&rft.date=2020-09-11&rft.volume=125&rft.issue=11&rft.spage=1&rft.epage=113201&rft.pages=1-113201&rft.artnum=113201&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.125.113201&rft_dat=%3Cproquest_cross%3E2446660873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446294137&rft_id=info:pmid/&rfr_iscdi=true |