Quantifying active diffusion in an agitated fluid

Mixing of reactants in microdroplets predominantly relies on diffusional motion due to small Reynolds numbers and the resulting absence of turbulent flows. Enhancing diffusion in microdroplets by an auxiliary noise source is therefore a topical problem. Here we report on how the diffusional motion o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2020-10, Vol.22 (38), p.21678-21684
Hauptverfasser: Gires, Pierre-Yves, Thampi, Mithun, Weiss, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21684
container_issue 38
container_start_page 21678
container_title Physical chemistry chemical physics : PCCP
container_volume 22
creator Gires, Pierre-Yves
Thampi, Mithun
Weiss, Matthias
description Mixing of reactants in microdroplets predominantly relies on diffusional motion due to small Reynolds numbers and the resulting absence of turbulent flows. Enhancing diffusion in microdroplets by an auxiliary noise source is therefore a topical problem. Here we report on how the diffusional motion of tracer beads is enhanced upon agitating the surrounding aqueous fluid with miniaturized magnetic stir bars that are compatible with microdroplets and microfluidic devices. Using single-particle tracking, we demonstrate via a broad palette of measures that local stirring of the fluid at different frequencies leads to an enhanced but apparently normal and homogenous diffusion process, i.e. diffusional steps follow the anticipated Gaussian distribution and no ballistic motion is observed whereas diffusion coefficients are significantly increased. The signature of stirring is, however, visible in the power-spectral density and in the velocity autocorrelation function of trajectories. Our data therefore demonstrate that diffusive mixing can be locally enhanced with miniaturized stir bars while only moderately affecting the ambient noise properties. The latter may also facilitate the controlled addition of nonequilibrium noise to complex fluids in future applications. Single-particle tracking reveals an enhanced diffusional motion of tracer beads when agitating the surrounding fluid with miniaturized magnetic stir bars. Signatures of the stirring are mostly encoded in correlation functions of the particle motion.
doi_str_mv 10.1039/d0cp03629c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2445975219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448820234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-b0bdbcd8bbf939c0db1f15e0c7c8a129538a9acdf8f8dc55b08b926e2251d563</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFKzVi3ch4kWE6OxuNtk9SvyEggq9L_tZtqRJzCaF_ntTKxU8CAMzh4eX4UXoHMMtBiruLJgWaE6EOUATnOU0FcCzw_1d5MfoJMYlAGCG6QThj0HVffCbUC8SZfqwdokN3g8xNHUS6kSNswi96p1NfDUEe4qOvKqiO_vZUzR_epyXL-ns7fm1vJ-lhhZFn2rQVhvLtfaCCgNWY4-ZA1MYrjARjHIllLGee24NYxq4FiR3hDBsWU6n6HoX23bN5-BiL1chGldVqnbNECXJMiYKRrAY6dUfumyGrh6f2yrOCRCajepmp0zXxNg5L9surFS3kRjktjz5AOX7d3nliC93uItm737Lla31o7n4z9Av9B92GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448820234</pqid></control><display><type>article</type><title>Quantifying active diffusion in an agitated fluid</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Gires, Pierre-Yves ; Thampi, Mithun ; Weiss, Matthias</creator><creatorcontrib>Gires, Pierre-Yves ; Thampi, Mithun ; Weiss, Matthias</creatorcontrib><description>Mixing of reactants in microdroplets predominantly relies on diffusional motion due to small Reynolds numbers and the resulting absence of turbulent flows. Enhancing diffusion in microdroplets by an auxiliary noise source is therefore a topical problem. Here we report on how the diffusional motion of tracer beads is enhanced upon agitating the surrounding aqueous fluid with miniaturized magnetic stir bars that are compatible with microdroplets and microfluidic devices. Using single-particle tracking, we demonstrate via a broad palette of measures that local stirring of the fluid at different frequencies leads to an enhanced but apparently normal and homogenous diffusion process, i.e. diffusional steps follow the anticipated Gaussian distribution and no ballistic motion is observed whereas diffusion coefficients are significantly increased. The signature of stirring is, however, visible in the power-spectral density and in the velocity autocorrelation function of trajectories. Our data therefore demonstrate that diffusive mixing can be locally enhanced with miniaturized stir bars while only moderately affecting the ambient noise properties. The latter may also facilitate the controlled addition of nonequilibrium noise to complex fluids in future applications. Single-particle tracking reveals an enhanced diffusional motion of tracer beads when agitating the surrounding fluid with miniaturized magnetic stir bars. Signatures of the stirring are mostly encoded in correlation functions of the particle motion.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d0cp03629c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Autocorrelation functions ; Beads ; Diffusion ; Fluid dynamics ; Fluid flow ; Fluids ; Microfluidic devices ; Noise ; Normal distribution ; Particle tracking ; Reynolds number ; Stirring ; Tracking devices</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-10, Vol.22 (38), p.21678-21684</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-b0bdbcd8bbf939c0db1f15e0c7c8a129538a9acdf8f8dc55b08b926e2251d563</citedby><cites>FETCH-LOGICAL-c377t-b0bdbcd8bbf939c0db1f15e0c7c8a129538a9acdf8f8dc55b08b926e2251d563</cites><orcidid>0000-0003-1409-8400 ; 0000-0002-7875-4297 ; 0000-0001-8814-9915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Gires, Pierre-Yves</creatorcontrib><creatorcontrib>Thampi, Mithun</creatorcontrib><creatorcontrib>Weiss, Matthias</creatorcontrib><title>Quantifying active diffusion in an agitated fluid</title><title>Physical chemistry chemical physics : PCCP</title><description>Mixing of reactants in microdroplets predominantly relies on diffusional motion due to small Reynolds numbers and the resulting absence of turbulent flows. Enhancing diffusion in microdroplets by an auxiliary noise source is therefore a topical problem. Here we report on how the diffusional motion of tracer beads is enhanced upon agitating the surrounding aqueous fluid with miniaturized magnetic stir bars that are compatible with microdroplets and microfluidic devices. Using single-particle tracking, we demonstrate via a broad palette of measures that local stirring of the fluid at different frequencies leads to an enhanced but apparently normal and homogenous diffusion process, i.e. diffusional steps follow the anticipated Gaussian distribution and no ballistic motion is observed whereas diffusion coefficients are significantly increased. The signature of stirring is, however, visible in the power-spectral density and in the velocity autocorrelation function of trajectories. Our data therefore demonstrate that diffusive mixing can be locally enhanced with miniaturized stir bars while only moderately affecting the ambient noise properties. The latter may also facilitate the controlled addition of nonequilibrium noise to complex fluids in future applications. Single-particle tracking reveals an enhanced diffusional motion of tracer beads when agitating the surrounding fluid with miniaturized magnetic stir bars. Signatures of the stirring are mostly encoded in correlation functions of the particle motion.</description><subject>Autocorrelation functions</subject><subject>Beads</subject><subject>Diffusion</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Microfluidic devices</subject><subject>Noise</subject><subject>Normal distribution</subject><subject>Particle tracking</subject><subject>Reynolds number</subject><subject>Stirring</subject><subject>Tracking devices</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1Lw0AQBuBFFKzVi3ch4kWE6OxuNtk9SvyEggq9L_tZtqRJzCaF_ntTKxU8CAMzh4eX4UXoHMMtBiruLJgWaE6EOUATnOU0FcCzw_1d5MfoJMYlAGCG6QThj0HVffCbUC8SZfqwdokN3g8xNHUS6kSNswi96p1NfDUEe4qOvKqiO_vZUzR_epyXL-ns7fm1vJ-lhhZFn2rQVhvLtfaCCgNWY4-ZA1MYrjARjHIllLGee24NYxq4FiR3hDBsWU6n6HoX23bN5-BiL1chGldVqnbNECXJMiYKRrAY6dUfumyGrh6f2yrOCRCajepmp0zXxNg5L9surFS3kRjktjz5AOX7d3nliC93uItm737Lla31o7n4z9Av9B92GQ</recordid><startdate>20201007</startdate><enddate>20201007</enddate><creator>Gires, Pierre-Yves</creator><creator>Thampi, Mithun</creator><creator>Weiss, Matthias</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1409-8400</orcidid><orcidid>https://orcid.org/0000-0002-7875-4297</orcidid><orcidid>https://orcid.org/0000-0001-8814-9915</orcidid></search><sort><creationdate>20201007</creationdate><title>Quantifying active diffusion in an agitated fluid</title><author>Gires, Pierre-Yves ; Thampi, Mithun ; Weiss, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-b0bdbcd8bbf939c0db1f15e0c7c8a129538a9acdf8f8dc55b08b926e2251d563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autocorrelation functions</topic><topic>Beads</topic><topic>Diffusion</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Microfluidic devices</topic><topic>Noise</topic><topic>Normal distribution</topic><topic>Particle tracking</topic><topic>Reynolds number</topic><topic>Stirring</topic><topic>Tracking devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gires, Pierre-Yves</creatorcontrib><creatorcontrib>Thampi, Mithun</creatorcontrib><creatorcontrib>Weiss, Matthias</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gires, Pierre-Yves</au><au>Thampi, Mithun</au><au>Weiss, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying active diffusion in an agitated fluid</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2020-10-07</date><risdate>2020</risdate><volume>22</volume><issue>38</issue><spage>21678</spage><epage>21684</epage><pages>21678-21684</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Mixing of reactants in microdroplets predominantly relies on diffusional motion due to small Reynolds numbers and the resulting absence of turbulent flows. Enhancing diffusion in microdroplets by an auxiliary noise source is therefore a topical problem. Here we report on how the diffusional motion of tracer beads is enhanced upon agitating the surrounding aqueous fluid with miniaturized magnetic stir bars that are compatible with microdroplets and microfluidic devices. Using single-particle tracking, we demonstrate via a broad palette of measures that local stirring of the fluid at different frequencies leads to an enhanced but apparently normal and homogenous diffusion process, i.e. diffusional steps follow the anticipated Gaussian distribution and no ballistic motion is observed whereas diffusion coefficients are significantly increased. The signature of stirring is, however, visible in the power-spectral density and in the velocity autocorrelation function of trajectories. Our data therefore demonstrate that diffusive mixing can be locally enhanced with miniaturized stir bars while only moderately affecting the ambient noise properties. The latter may also facilitate the controlled addition of nonequilibrium noise to complex fluids in future applications. Single-particle tracking reveals an enhanced diffusional motion of tracer beads when agitating the surrounding fluid with miniaturized magnetic stir bars. Signatures of the stirring are mostly encoded in correlation functions of the particle motion.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0cp03629c</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1409-8400</orcidid><orcidid>https://orcid.org/0000-0002-7875-4297</orcidid><orcidid>https://orcid.org/0000-0001-8814-9915</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2020-10, Vol.22 (38), p.21678-21684
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2445975219
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Autocorrelation functions
Beads
Diffusion
Fluid dynamics
Fluid flow
Fluids
Microfluidic devices
Noise
Normal distribution
Particle tracking
Reynolds number
Stirring
Tracking devices
title Quantifying active diffusion in an agitated fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A17%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20active%20diffusion%20in%20an%20agitated%20fluid&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Gires,%20Pierre-Yves&rft.date=2020-10-07&rft.volume=22&rft.issue=38&rft.spage=21678&rft.epage=21684&rft.pages=21678-21684&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d0cp03629c&rft_dat=%3Cproquest_cross%3E2448820234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448820234&rft_id=info:pmid/&rfr_iscdi=true