The Relative Thermodynamic Stability of Diamond and Graphite

Recent density‐functional theory (DFT) calculations raised the possibility that diamond could be degenerate with graphite at very low temperatures. Through high‐accuracy calorimetric experiments closing gaps in available data, we reinvestigate the relative thermodynamic stability of diamond and grap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2021-01, Vol.60 (3), p.1546-1549
Hauptverfasser: White, Mary Anne, Kahwaji, Samer, Freitas, Vera L. S., Siewert, Riko, Weatherby, Joseph A., Ribeiro da Silva, Maria D. M. C., Verevkin, Sergey P., Johnson, Erin R., Zwanziger, Josef W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1549
container_issue 3
container_start_page 1546
container_title Angewandte Chemie International Edition
container_volume 60
creator White, Mary Anne
Kahwaji, Samer
Freitas, Vera L. S.
Siewert, Riko
Weatherby, Joseph A.
Ribeiro da Silva, Maria D. M. C.
Verevkin, Sergey P.
Johnson, Erin R.
Zwanziger, Josef W.
description Recent density‐functional theory (DFT) calculations raised the possibility that diamond could be degenerate with graphite at very low temperatures. Through high‐accuracy calorimetric experiments closing gaps in available data, we reinvestigate the relative thermodynamic stability of diamond and graphite. For T
doi_str_mv 10.1002/anie.202009897
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2445969906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476859953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4107-398e02ff1e6938eda3075394e3a1e83d17d540377fa3d2a30eadbb5a89835f823</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgipvTq0cpePHSmY-mScDLmHMOREHnOaTtW5bRj9m0Sv97MzYnePEQkpBfHl4ehC4JHhOM6a2pLIwpphgrqcQRGhJOSciEYMf-HDEWCsnJAJ05t_ZeShyfogGjSmAW8yG6W64geIXCtPYTAn9pyjrrK1PaNHhrTWIL2_ZBnQf31pR1lQXGr3ljNivbwjk6yU3h4GK_j9D7w2w5fQyfXuaL6eQpTCOCRciUBEzznECsmITMMCw4UxEwQ0CyjIiMR9jPnBuWUf8KJksSbqSSjOeSshG62eVumvqjA9fq0roUisJUUHdO0yjiKlYKx55e_6HrumsqP51XIpZcKc68Gu9U2tTONZDrTWNL0_SaYL3tVW971Yde_YerfWyXlJAd-E-RHqgd-LIF9P_E6cnzYvYb_g1XzYJl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476859953</pqid></control><display><type>article</type><title>The Relative Thermodynamic Stability of Diamond and Graphite</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>White, Mary Anne ; Kahwaji, Samer ; Freitas, Vera L. S. ; Siewert, Riko ; Weatherby, Joseph A. ; Ribeiro da Silva, Maria D. M. C. ; Verevkin, Sergey P. ; Johnson, Erin R. ; Zwanziger, Josef W.</creator><creatorcontrib>White, Mary Anne ; Kahwaji, Samer ; Freitas, Vera L. S. ; Siewert, Riko ; Weatherby, Joseph A. ; Ribeiro da Silva, Maria D. M. C. ; Verevkin, Sergey P. ; Johnson, Erin R. ; Zwanziger, Josef W.</creatorcontrib><description>Recent density‐functional theory (DFT) calculations raised the possibility that diamond could be degenerate with graphite at very low temperatures. Through high‐accuracy calorimetric experiments closing gaps in available data, we reinvestigate the relative thermodynamic stability of diamond and graphite. For T&lt;400 K, graphite is always more stable than diamond at ambient pressure. At low temperatures, the stability is enthalpically driven, and entropy terms add to the stability at higher temperatures. We also carried out DFT calculations: B86bPBE‐25X‐XDM//B86bPBE‐XDM and PBE0‐XDM//PBE‐XDM results overlap with the experimental −TΔS results and bracket the experimental values of ΔH and ΔG, displaced by only about 2× the experimental uncertainty. Revised values of the standard thermodynamic functions for diamond are ΔfHo=−2150±150 J mol−1, ΔfSo=3.44±0.03 J K−1 mol−1 and ΔfGo=−3170±150 J mol−1. Through experimental thermodynamics and density‐functional theory, it is shown that graphite is more stable than diamond for T&lt;400 K.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202009897</identifier><identifier>PMID: 32970365</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>density-functional calculations ; diamond ; Diamonds ; Entropy ; Graphite ; Low temperature ; Mathematical analysis ; phase stability ; Pressure ; Stability ; thermodynamics</subject><ispartof>Angewandte Chemie International Edition, 2021-01, Vol.60 (3), p.1546-1549</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4107-398e02ff1e6938eda3075394e3a1e83d17d540377fa3d2a30eadbb5a89835f823</citedby><cites>FETCH-LOGICAL-c4107-398e02ff1e6938eda3075394e3a1e83d17d540377fa3d2a30eadbb5a89835f823</cites><orcidid>0000-0002-3670-2595 ; 0000-0002-5651-468X ; 0000-0001-8017-0322 ; 0000-0002-0957-5594 ; 0000-0002-6629-3198 ; 0000-0003-0482-0308 ; 0000-0001-9999-7469 ; 0000-0001-8142-0004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202009897$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202009897$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32970365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>White, Mary Anne</creatorcontrib><creatorcontrib>Kahwaji, Samer</creatorcontrib><creatorcontrib>Freitas, Vera L. S.</creatorcontrib><creatorcontrib>Siewert, Riko</creatorcontrib><creatorcontrib>Weatherby, Joseph A.</creatorcontrib><creatorcontrib>Ribeiro da Silva, Maria D. M. C.</creatorcontrib><creatorcontrib>Verevkin, Sergey P.</creatorcontrib><creatorcontrib>Johnson, Erin R.</creatorcontrib><creatorcontrib>Zwanziger, Josef W.</creatorcontrib><title>The Relative Thermodynamic Stability of Diamond and Graphite</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Recent density‐functional theory (DFT) calculations raised the possibility that diamond could be degenerate with graphite at very low temperatures. Through high‐accuracy calorimetric experiments closing gaps in available data, we reinvestigate the relative thermodynamic stability of diamond and graphite. For T&lt;400 K, graphite is always more stable than diamond at ambient pressure. At low temperatures, the stability is enthalpically driven, and entropy terms add to the stability at higher temperatures. We also carried out DFT calculations: B86bPBE‐25X‐XDM//B86bPBE‐XDM and PBE0‐XDM//PBE‐XDM results overlap with the experimental −TΔS results and bracket the experimental values of ΔH and ΔG, displaced by only about 2× the experimental uncertainty. Revised values of the standard thermodynamic functions for diamond are ΔfHo=−2150±150 J mol−1, ΔfSo=3.44±0.03 J K−1 mol−1 and ΔfGo=−3170±150 J mol−1. Through experimental thermodynamics and density‐functional theory, it is shown that graphite is more stable than diamond for T&lt;400 K.</description><subject>density-functional calculations</subject><subject>diamond</subject><subject>Diamonds</subject><subject>Entropy</subject><subject>Graphite</subject><subject>Low temperature</subject><subject>Mathematical analysis</subject><subject>phase stability</subject><subject>Pressure</subject><subject>Stability</subject><subject>thermodynamics</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0M1LwzAYBvAgipvTq0cpePHSmY-mScDLmHMOREHnOaTtW5bRj9m0Sv97MzYnePEQkpBfHl4ehC4JHhOM6a2pLIwpphgrqcQRGhJOSciEYMf-HDEWCsnJAJ05t_ZeShyfogGjSmAW8yG6W64geIXCtPYTAn9pyjrrK1PaNHhrTWIL2_ZBnQf31pR1lQXGr3ljNivbwjk6yU3h4GK_j9D7w2w5fQyfXuaL6eQpTCOCRciUBEzznECsmITMMCw4UxEwQ0CyjIiMR9jPnBuWUf8KJksSbqSSjOeSshG62eVumvqjA9fq0roUisJUUHdO0yjiKlYKx55e_6HrumsqP51XIpZcKc68Gu9U2tTONZDrTWNL0_SaYL3tVW971Yde_YerfWyXlJAd-E-RHqgd-LIF9P_E6cnzYvYb_g1XzYJl</recordid><startdate>20210118</startdate><enddate>20210118</enddate><creator>White, Mary Anne</creator><creator>Kahwaji, Samer</creator><creator>Freitas, Vera L. S.</creator><creator>Siewert, Riko</creator><creator>Weatherby, Joseph A.</creator><creator>Ribeiro da Silva, Maria D. M. C.</creator><creator>Verevkin, Sergey P.</creator><creator>Johnson, Erin R.</creator><creator>Zwanziger, Josef W.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3670-2595</orcidid><orcidid>https://orcid.org/0000-0002-5651-468X</orcidid><orcidid>https://orcid.org/0000-0001-8017-0322</orcidid><orcidid>https://orcid.org/0000-0002-0957-5594</orcidid><orcidid>https://orcid.org/0000-0002-6629-3198</orcidid><orcidid>https://orcid.org/0000-0003-0482-0308</orcidid><orcidid>https://orcid.org/0000-0001-9999-7469</orcidid><orcidid>https://orcid.org/0000-0001-8142-0004</orcidid></search><sort><creationdate>20210118</creationdate><title>The Relative Thermodynamic Stability of Diamond and Graphite</title><author>White, Mary Anne ; Kahwaji, Samer ; Freitas, Vera L. S. ; Siewert, Riko ; Weatherby, Joseph A. ; Ribeiro da Silva, Maria D. M. C. ; Verevkin, Sergey P. ; Johnson, Erin R. ; Zwanziger, Josef W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4107-398e02ff1e6938eda3075394e3a1e83d17d540377fa3d2a30eadbb5a89835f823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>density-functional calculations</topic><topic>diamond</topic><topic>Diamonds</topic><topic>Entropy</topic><topic>Graphite</topic><topic>Low temperature</topic><topic>Mathematical analysis</topic><topic>phase stability</topic><topic>Pressure</topic><topic>Stability</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Mary Anne</creatorcontrib><creatorcontrib>Kahwaji, Samer</creatorcontrib><creatorcontrib>Freitas, Vera L. S.</creatorcontrib><creatorcontrib>Siewert, Riko</creatorcontrib><creatorcontrib>Weatherby, Joseph A.</creatorcontrib><creatorcontrib>Ribeiro da Silva, Maria D. M. C.</creatorcontrib><creatorcontrib>Verevkin, Sergey P.</creatorcontrib><creatorcontrib>Johnson, Erin R.</creatorcontrib><creatorcontrib>Zwanziger, Josef W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Mary Anne</au><au>Kahwaji, Samer</au><au>Freitas, Vera L. S.</au><au>Siewert, Riko</au><au>Weatherby, Joseph A.</au><au>Ribeiro da Silva, Maria D. M. C.</au><au>Verevkin, Sergey P.</au><au>Johnson, Erin R.</au><au>Zwanziger, Josef W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Relative Thermodynamic Stability of Diamond and Graphite</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-01-18</date><risdate>2021</risdate><volume>60</volume><issue>3</issue><spage>1546</spage><epage>1549</epage><pages>1546-1549</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Recent density‐functional theory (DFT) calculations raised the possibility that diamond could be degenerate with graphite at very low temperatures. Through high‐accuracy calorimetric experiments closing gaps in available data, we reinvestigate the relative thermodynamic stability of diamond and graphite. For T&lt;400 K, graphite is always more stable than diamond at ambient pressure. At low temperatures, the stability is enthalpically driven, and entropy terms add to the stability at higher temperatures. We also carried out DFT calculations: B86bPBE‐25X‐XDM//B86bPBE‐XDM and PBE0‐XDM//PBE‐XDM results overlap with the experimental −TΔS results and bracket the experimental values of ΔH and ΔG, displaced by only about 2× the experimental uncertainty. Revised values of the standard thermodynamic functions for diamond are ΔfHo=−2150±150 J mol−1, ΔfSo=3.44±0.03 J K−1 mol−1 and ΔfGo=−3170±150 J mol−1. Through experimental thermodynamics and density‐functional theory, it is shown that graphite is more stable than diamond for T&lt;400 K.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32970365</pmid><doi>10.1002/anie.202009897</doi><tpages>4</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-3670-2595</orcidid><orcidid>https://orcid.org/0000-0002-5651-468X</orcidid><orcidid>https://orcid.org/0000-0001-8017-0322</orcidid><orcidid>https://orcid.org/0000-0002-0957-5594</orcidid><orcidid>https://orcid.org/0000-0002-6629-3198</orcidid><orcidid>https://orcid.org/0000-0003-0482-0308</orcidid><orcidid>https://orcid.org/0000-0001-9999-7469</orcidid><orcidid>https://orcid.org/0000-0001-8142-0004</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2021-01, Vol.60 (3), p.1546-1549
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2445969906
source Wiley Online Library Journals Frontfile Complete
subjects density-functional calculations
diamond
Diamonds
Entropy
Graphite
Low temperature
Mathematical analysis
phase stability
Pressure
Stability
thermodynamics
title The Relative Thermodynamic Stability of Diamond and Graphite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Relative%20Thermodynamic%20Stability%20of%20Diamond%20and%20Graphite&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=White,%20Mary%20Anne&rft.date=2021-01-18&rft.volume=60&rft.issue=3&rft.spage=1546&rft.epage=1549&rft.pages=1546-1549&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202009897&rft_dat=%3Cproquest_cross%3E2476859953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476859953&rft_id=info:pmid/32970365&rfr_iscdi=true