The Relative Thermodynamic Stability of Diamond and Graphite
Recent density‐functional theory (DFT) calculations raised the possibility that diamond could be degenerate with graphite at very low temperatures. Through high‐accuracy calorimetric experiments closing gaps in available data, we reinvestigate the relative thermodynamic stability of diamond and grap...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2021-01, Vol.60 (3), p.1546-1549 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1549 |
---|---|
container_issue | 3 |
container_start_page | 1546 |
container_title | Angewandte Chemie International Edition |
container_volume | 60 |
creator | White, Mary Anne Kahwaji, Samer Freitas, Vera L. S. Siewert, Riko Weatherby, Joseph A. Ribeiro da Silva, Maria D. M. C. Verevkin, Sergey P. Johnson, Erin R. Zwanziger, Josef W. |
description | Recent density‐functional theory (DFT) calculations raised the possibility that diamond could be degenerate with graphite at very low temperatures. Through high‐accuracy calorimetric experiments closing gaps in available data, we reinvestigate the relative thermodynamic stability of diamond and graphite. For T |
doi_str_mv | 10.1002/anie.202009897 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2445969906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476859953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4107-398e02ff1e6938eda3075394e3a1e83d17d540377fa3d2a30eadbb5a89835f823</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgipvTq0cpePHSmY-mScDLmHMOREHnOaTtW5bRj9m0Sv97MzYnePEQkpBfHl4ehC4JHhOM6a2pLIwpphgrqcQRGhJOSciEYMf-HDEWCsnJAJ05t_ZeShyfogGjSmAW8yG6W64geIXCtPYTAn9pyjrrK1PaNHhrTWIL2_ZBnQf31pR1lQXGr3ljNivbwjk6yU3h4GK_j9D7w2w5fQyfXuaL6eQpTCOCRciUBEzznECsmITMMCw4UxEwQ0CyjIiMR9jPnBuWUf8KJksSbqSSjOeSshG62eVumvqjA9fq0roUisJUUHdO0yjiKlYKx55e_6HrumsqP51XIpZcKc68Gu9U2tTONZDrTWNL0_SaYL3tVW971Yde_YerfWyXlJAd-E-RHqgd-LIF9P_E6cnzYvYb_g1XzYJl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476859953</pqid></control><display><type>article</type><title>The Relative Thermodynamic Stability of Diamond and Graphite</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>White, Mary Anne ; Kahwaji, Samer ; Freitas, Vera L. S. ; Siewert, Riko ; Weatherby, Joseph A. ; Ribeiro da Silva, Maria D. M. C. ; Verevkin, Sergey P. ; Johnson, Erin R. ; Zwanziger, Josef W.</creator><creatorcontrib>White, Mary Anne ; Kahwaji, Samer ; Freitas, Vera L. S. ; Siewert, Riko ; Weatherby, Joseph A. ; Ribeiro da Silva, Maria D. M. C. ; Verevkin, Sergey P. ; Johnson, Erin R. ; Zwanziger, Josef W.</creatorcontrib><description>Recent density‐functional theory (DFT) calculations raised the possibility that diamond could be degenerate with graphite at very low temperatures. Through high‐accuracy calorimetric experiments closing gaps in available data, we reinvestigate the relative thermodynamic stability of diamond and graphite. For T<400 K, graphite is always more stable than diamond at ambient pressure. At low temperatures, the stability is enthalpically driven, and entropy terms add to the stability at higher temperatures. We also carried out DFT calculations: B86bPBE‐25X‐XDM//B86bPBE‐XDM and PBE0‐XDM//PBE‐XDM results overlap with the experimental −TΔS results and bracket the experimental values of ΔH and ΔG, displaced by only about 2× the experimental uncertainty. Revised values of the standard thermodynamic functions for diamond are ΔfHo=−2150±150 J mol−1, ΔfSo=3.44±0.03 J K−1 mol−1 and ΔfGo=−3170±150 J mol−1.
Through experimental thermodynamics and density‐functional theory, it is shown that graphite is more stable than diamond for T<400 K.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202009897</identifier><identifier>PMID: 32970365</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>density-functional calculations ; diamond ; Diamonds ; Entropy ; Graphite ; Low temperature ; Mathematical analysis ; phase stability ; Pressure ; Stability ; thermodynamics</subject><ispartof>Angewandte Chemie International Edition, 2021-01, Vol.60 (3), p.1546-1549</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4107-398e02ff1e6938eda3075394e3a1e83d17d540377fa3d2a30eadbb5a89835f823</citedby><cites>FETCH-LOGICAL-c4107-398e02ff1e6938eda3075394e3a1e83d17d540377fa3d2a30eadbb5a89835f823</cites><orcidid>0000-0002-3670-2595 ; 0000-0002-5651-468X ; 0000-0001-8017-0322 ; 0000-0002-0957-5594 ; 0000-0002-6629-3198 ; 0000-0003-0482-0308 ; 0000-0001-9999-7469 ; 0000-0001-8142-0004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202009897$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202009897$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32970365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>White, Mary Anne</creatorcontrib><creatorcontrib>Kahwaji, Samer</creatorcontrib><creatorcontrib>Freitas, Vera L. S.</creatorcontrib><creatorcontrib>Siewert, Riko</creatorcontrib><creatorcontrib>Weatherby, Joseph A.</creatorcontrib><creatorcontrib>Ribeiro da Silva, Maria D. M. C.</creatorcontrib><creatorcontrib>Verevkin, Sergey P.</creatorcontrib><creatorcontrib>Johnson, Erin R.</creatorcontrib><creatorcontrib>Zwanziger, Josef W.</creatorcontrib><title>The Relative Thermodynamic Stability of Diamond and Graphite</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Recent density‐functional theory (DFT) calculations raised the possibility that diamond could be degenerate with graphite at very low temperatures. Through high‐accuracy calorimetric experiments closing gaps in available data, we reinvestigate the relative thermodynamic stability of diamond and graphite. For T<400 K, graphite is always more stable than diamond at ambient pressure. At low temperatures, the stability is enthalpically driven, and entropy terms add to the stability at higher temperatures. We also carried out DFT calculations: B86bPBE‐25X‐XDM//B86bPBE‐XDM and PBE0‐XDM//PBE‐XDM results overlap with the experimental −TΔS results and bracket the experimental values of ΔH and ΔG, displaced by only about 2× the experimental uncertainty. Revised values of the standard thermodynamic functions for diamond are ΔfHo=−2150±150 J mol−1, ΔfSo=3.44±0.03 J K−1 mol−1 and ΔfGo=−3170±150 J mol−1.
Through experimental thermodynamics and density‐functional theory, it is shown that graphite is more stable than diamond for T<400 K.</description><subject>density-functional calculations</subject><subject>diamond</subject><subject>Diamonds</subject><subject>Entropy</subject><subject>Graphite</subject><subject>Low temperature</subject><subject>Mathematical analysis</subject><subject>phase stability</subject><subject>Pressure</subject><subject>Stability</subject><subject>thermodynamics</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0M1LwzAYBvAgipvTq0cpePHSmY-mScDLmHMOREHnOaTtW5bRj9m0Sv97MzYnePEQkpBfHl4ehC4JHhOM6a2pLIwpphgrqcQRGhJOSciEYMf-HDEWCsnJAJ05t_ZeShyfogGjSmAW8yG6W64geIXCtPYTAn9pyjrrK1PaNHhrTWIL2_ZBnQf31pR1lQXGr3ljNivbwjk6yU3h4GK_j9D7w2w5fQyfXuaL6eQpTCOCRciUBEzznECsmITMMCw4UxEwQ0CyjIiMR9jPnBuWUf8KJksSbqSSjOeSshG62eVumvqjA9fq0roUisJUUHdO0yjiKlYKx55e_6HrumsqP51XIpZcKc68Gu9U2tTONZDrTWNL0_SaYL3tVW971Yde_YerfWyXlJAd-E-RHqgd-LIF9P_E6cnzYvYb_g1XzYJl</recordid><startdate>20210118</startdate><enddate>20210118</enddate><creator>White, Mary Anne</creator><creator>Kahwaji, Samer</creator><creator>Freitas, Vera L. S.</creator><creator>Siewert, Riko</creator><creator>Weatherby, Joseph A.</creator><creator>Ribeiro da Silva, Maria D. M. C.</creator><creator>Verevkin, Sergey P.</creator><creator>Johnson, Erin R.</creator><creator>Zwanziger, Josef W.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3670-2595</orcidid><orcidid>https://orcid.org/0000-0002-5651-468X</orcidid><orcidid>https://orcid.org/0000-0001-8017-0322</orcidid><orcidid>https://orcid.org/0000-0002-0957-5594</orcidid><orcidid>https://orcid.org/0000-0002-6629-3198</orcidid><orcidid>https://orcid.org/0000-0003-0482-0308</orcidid><orcidid>https://orcid.org/0000-0001-9999-7469</orcidid><orcidid>https://orcid.org/0000-0001-8142-0004</orcidid></search><sort><creationdate>20210118</creationdate><title>The Relative Thermodynamic Stability of Diamond and Graphite</title><author>White, Mary Anne ; Kahwaji, Samer ; Freitas, Vera L. S. ; Siewert, Riko ; Weatherby, Joseph A. ; Ribeiro da Silva, Maria D. M. C. ; Verevkin, Sergey P. ; Johnson, Erin R. ; Zwanziger, Josef W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4107-398e02ff1e6938eda3075394e3a1e83d17d540377fa3d2a30eadbb5a89835f823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>density-functional calculations</topic><topic>diamond</topic><topic>Diamonds</topic><topic>Entropy</topic><topic>Graphite</topic><topic>Low temperature</topic><topic>Mathematical analysis</topic><topic>phase stability</topic><topic>Pressure</topic><topic>Stability</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Mary Anne</creatorcontrib><creatorcontrib>Kahwaji, Samer</creatorcontrib><creatorcontrib>Freitas, Vera L. S.</creatorcontrib><creatorcontrib>Siewert, Riko</creatorcontrib><creatorcontrib>Weatherby, Joseph A.</creatorcontrib><creatorcontrib>Ribeiro da Silva, Maria D. M. C.</creatorcontrib><creatorcontrib>Verevkin, Sergey P.</creatorcontrib><creatorcontrib>Johnson, Erin R.</creatorcontrib><creatorcontrib>Zwanziger, Josef W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Mary Anne</au><au>Kahwaji, Samer</au><au>Freitas, Vera L. S.</au><au>Siewert, Riko</au><au>Weatherby, Joseph A.</au><au>Ribeiro da Silva, Maria D. M. C.</au><au>Verevkin, Sergey P.</au><au>Johnson, Erin R.</au><au>Zwanziger, Josef W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Relative Thermodynamic Stability of Diamond and Graphite</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-01-18</date><risdate>2021</risdate><volume>60</volume><issue>3</issue><spage>1546</spage><epage>1549</epage><pages>1546-1549</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Recent density‐functional theory (DFT) calculations raised the possibility that diamond could be degenerate with graphite at very low temperatures. Through high‐accuracy calorimetric experiments closing gaps in available data, we reinvestigate the relative thermodynamic stability of diamond and graphite. For T<400 K, graphite is always more stable than diamond at ambient pressure. At low temperatures, the stability is enthalpically driven, and entropy terms add to the stability at higher temperatures. We also carried out DFT calculations: B86bPBE‐25X‐XDM//B86bPBE‐XDM and PBE0‐XDM//PBE‐XDM results overlap with the experimental −TΔS results and bracket the experimental values of ΔH and ΔG, displaced by only about 2× the experimental uncertainty. Revised values of the standard thermodynamic functions for diamond are ΔfHo=−2150±150 J mol−1, ΔfSo=3.44±0.03 J K−1 mol−1 and ΔfGo=−3170±150 J mol−1.
Through experimental thermodynamics and density‐functional theory, it is shown that graphite is more stable than diamond for T<400 K.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32970365</pmid><doi>10.1002/anie.202009897</doi><tpages>4</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-3670-2595</orcidid><orcidid>https://orcid.org/0000-0002-5651-468X</orcidid><orcidid>https://orcid.org/0000-0001-8017-0322</orcidid><orcidid>https://orcid.org/0000-0002-0957-5594</orcidid><orcidid>https://orcid.org/0000-0002-6629-3198</orcidid><orcidid>https://orcid.org/0000-0003-0482-0308</orcidid><orcidid>https://orcid.org/0000-0001-9999-7469</orcidid><orcidid>https://orcid.org/0000-0001-8142-0004</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2021-01, Vol.60 (3), p.1546-1549 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2445969906 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | density-functional calculations diamond Diamonds Entropy Graphite Low temperature Mathematical analysis phase stability Pressure Stability thermodynamics |
title | The Relative Thermodynamic Stability of Diamond and Graphite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Relative%20Thermodynamic%20Stability%20of%20Diamond%20and%20Graphite&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=White,%20Mary%20Anne&rft.date=2021-01-18&rft.volume=60&rft.issue=3&rft.spage=1546&rft.epage=1549&rft.pages=1546-1549&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202009897&rft_dat=%3Cproquest_cross%3E2476859953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476859953&rft_id=info:pmid/32970365&rfr_iscdi=true |