Theory of Raman scattering in superconductors
The electronic Raman scattering by pairs of quasiparticles is calculated at zero temp., generalizing previous calculations that were based on the Bardeen--Cooper--Schrieffer model of a superconductor. Analytical and numerical results are presented for the spectrum as a function of wave vector q, and...
Gespeichert in:
Veröffentlicht in: | Phys. Rev. B: Condens. Matter; (United States) 1984-05, Vol.29 (9), p.4976-4991 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4991 |
---|---|
container_issue | 9 |
container_start_page | 4976 |
container_title | Phys. Rev. B: Condens. Matter; (United States) |
container_volume | 29 |
creator | KLEIN, M. V DIERKER, S. B |
description | The electronic Raman scattering by pairs of quasiparticles is calculated at zero temp., generalizing previous calculations that were based on the Bardeen--Cooper--Schrieffer model of a superconductor. Analytical and numerical results are presented for the spectrum as a function of wave vector q, and an integration is performed over q sub z to include the effect of a finite optical penetration depth. Allowing for gap anisotropy, the results are corrected for vertex and Coulomb polarization effects. The theoretical results for finite q are used to calculate spectra for Nb sub 3 Sn, V sub 3 Si, and Nb, neglecting gap anisotropy. Experimental data are presented for V sub 3 Si and Nb. The data for V sub 3 Si are fit to a zero-q theory that includes gap anisotropy, with results similar to those presented earlier for Nb sub 3 Sn. The role of possible excitons on the Raman spectra is examined. These theoretical results are then used to discuss the self-energy of a Raman-active optical phonon in a superconductor. 34 ref.--AA |
doi_str_mv | 10.1103/physrevb.29.4976 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_24455996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24455996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-bd1ba3f53e46601556b92929629e196c9d811a42ee416d36332376e8130e4f023</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3j4uIt6357uao4hcUlFLPIZudtZHtZk2yhf57U1qcOQwDzzsMD0LXBM8Iwex-WO9igG09o2rG1VyeoAnBSpRsrsQpmmAiWUkqqs7RRYw_OBeVaoLK1Rp82BW-LZZmY_oiWpMSBNd_Fy5v4wDB-r4ZbfIhXqKz1nQRro5zir5enldPb-Xi4_X96WFRWqZ4KuuG1Ia1ggGXEhMhZK1obkkVECWtaipCDKcAnMiGScYom0uoCMPAW0zZFN0c7vqYnI7WJbDr_EYPNmlJmaBYZujuAA3B_44Qk964aKHrTA9-jJpyLoRSexAfQBt8zJJaPQS3MWGnCdZ7efozy1vC9lFTpffycuT2eNtkIV0bTG9d_M9VihPMKfsD2jZuzw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24455996</pqid></control><display><type>article</type><title>Theory of Raman scattering in superconductors</title><source>American Physical Society Journals</source><creator>KLEIN, M. V ; DIERKER, S. B</creator><creatorcontrib>KLEIN, M. V ; DIERKER, S. B ; Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois 61801</creatorcontrib><description>The electronic Raman scattering by pairs of quasiparticles is calculated at zero temp., generalizing previous calculations that were based on the Bardeen--Cooper--Schrieffer model of a superconductor. Analytical and numerical results are presented for the spectrum as a function of wave vector q, and an integration is performed over q sub z to include the effect of a finite optical penetration depth. Allowing for gap anisotropy, the results are corrected for vertex and Coulomb polarization effects. The theoretical results for finite q are used to calculate spectra for Nb sub 3 Sn, V sub 3 Si, and Nb, neglecting gap anisotropy. Experimental data are presented for V sub 3 Si and Nb. The data for V sub 3 Si are fit to a zero-q theory that includes gap anisotropy, with results similar to those presented earlier for Nb sub 3 Sn. The role of possible excitons on the Raman spectra is examined. These theoretical results are then used to discuss the self-energy of a Raman-active optical phonon in a superconductor. 34 ref.--AA</description><identifier>ISSN: 0163-1829</identifier><identifier>EISSN: 1095-3795</identifier><identifier>DOI: 10.1103/physrevb.29.4976</identifier><identifier>CODEN: PRBMDO</identifier><language>eng</language><publisher>Woodbury, NY: American Physical Society</publisher><subject>360104 - Metals & Alloys- Physical Properties ; 656102 - Solid State Physics- Superconductivity- Acoustic, Electronic, Magnetic, Optical, & Thermal Phenomena- (-1987) ; ABSOLUTE ZERO TEMPERATURE ; ANISOTROPY ; BCS THEORY ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; COUPLING ; ELECTRIC CONDUCTIVITY ; ELECTRICAL PROPERTIES ; ELEMENTS ; ENERGY ; ENERGY GAP ; Exact sciences and technology ; EXCITONS ; MATERIALS SCIENCE ; METALS ; Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.) ; NIOBIUM ; NIOBIUM COMPOUNDS ; PHONONS ; PHYSICAL PROPERTIES ; Physics ; QUASI PARTICLES ; RAMAN EFFECT ; REFRACTORY METAL COMPOUNDS ; SILICIDES ; SILICON COMPOUNDS ; Superconducting materials (excluding high-tc compounds) ; SUPERCONDUCTIVITY ; SUPERCONDUCTORS ; Theory and models of superconducting state ; THRESHOLD ENERGY ; TIN COMPOUNDS ; TRANSITION ELEMENT COMPOUNDS ; TRANSITION ELEMENTS ; VANADIUM COMPOUNDS ; VANADIUM SILICIDES</subject><ispartof>Phys. Rev. B: Condens. Matter; (United States), 1984-05, Vol.29 (9), p.4976-4991</ispartof><rights>1985 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-bd1ba3f53e46601556b92929629e196c9d811a42ee416d36332376e8130e4f023</citedby><cites>FETCH-LOGICAL-c394t-bd1ba3f53e46601556b92929629e196c9d811a42ee416d36332376e8130e4f023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8941042$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6235206$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>KLEIN, M. V</creatorcontrib><creatorcontrib>DIERKER, S. B</creatorcontrib><creatorcontrib>Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois 61801</creatorcontrib><title>Theory of Raman scattering in superconductors</title><title>Phys. Rev. B: Condens. Matter; (United States)</title><description>The electronic Raman scattering by pairs of quasiparticles is calculated at zero temp., generalizing previous calculations that were based on the Bardeen--Cooper--Schrieffer model of a superconductor. Analytical and numerical results are presented for the spectrum as a function of wave vector q, and an integration is performed over q sub z to include the effect of a finite optical penetration depth. Allowing for gap anisotropy, the results are corrected for vertex and Coulomb polarization effects. The theoretical results for finite q are used to calculate spectra for Nb sub 3 Sn, V sub 3 Si, and Nb, neglecting gap anisotropy. Experimental data are presented for V sub 3 Si and Nb. The data for V sub 3 Si are fit to a zero-q theory that includes gap anisotropy, with results similar to those presented earlier for Nb sub 3 Sn. The role of possible excitons on the Raman spectra is examined. These theoretical results are then used to discuss the self-energy of a Raman-active optical phonon in a superconductor. 34 ref.--AA</description><subject>360104 - Metals & Alloys- Physical Properties</subject><subject>656102 - Solid State Physics- Superconductivity- Acoustic, Electronic, Magnetic, Optical, & Thermal Phenomena- (-1987)</subject><subject>ABSOLUTE ZERO TEMPERATURE</subject><subject>ANISOTROPY</subject><subject>BCS THEORY</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>COUPLING</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>ELECTRICAL PROPERTIES</subject><subject>ELEMENTS</subject><subject>ENERGY</subject><subject>ENERGY GAP</subject><subject>Exact sciences and technology</subject><subject>EXCITONS</subject><subject>MATERIALS SCIENCE</subject><subject>METALS</subject><subject>Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.)</subject><subject>NIOBIUM</subject><subject>NIOBIUM COMPOUNDS</subject><subject>PHONONS</subject><subject>PHYSICAL PROPERTIES</subject><subject>Physics</subject><subject>QUASI PARTICLES</subject><subject>RAMAN EFFECT</subject><subject>REFRACTORY METAL COMPOUNDS</subject><subject>SILICIDES</subject><subject>SILICON COMPOUNDS</subject><subject>Superconducting materials (excluding high-tc compounds)</subject><subject>SUPERCONDUCTIVITY</subject><subject>SUPERCONDUCTORS</subject><subject>Theory and models of superconducting state</subject><subject>THRESHOLD ENERGY</subject><subject>TIN COMPOUNDS</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>TRANSITION ELEMENTS</subject><subject>VANADIUM COMPOUNDS</subject><subject>VANADIUM SILICIDES</subject><issn>0163-1829</issn><issn>1095-3795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3j4uIt6357uao4hcUlFLPIZudtZHtZk2yhf57U1qcOQwDzzsMD0LXBM8Iwex-WO9igG09o2rG1VyeoAnBSpRsrsQpmmAiWUkqqs7RRYw_OBeVaoLK1Rp82BW-LZZmY_oiWpMSBNd_Fy5v4wDB-r4ZbfIhXqKz1nQRro5zir5enldPb-Xi4_X96WFRWqZ4KuuG1Ia1ggGXEhMhZK1obkkVECWtaipCDKcAnMiGScYom0uoCMPAW0zZFN0c7vqYnI7WJbDr_EYPNmlJmaBYZujuAA3B_44Qk964aKHrTA9-jJpyLoRSexAfQBt8zJJaPQS3MWGnCdZ7efozy1vC9lFTpffycuT2eNtkIV0bTG9d_M9VihPMKfsD2jZuzw</recordid><startdate>19840501</startdate><enddate>19840501</enddate><creator>KLEIN, M. V</creator><creator>DIERKER, S. B</creator><general>American Physical Society</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>19840501</creationdate><title>Theory of Raman scattering in superconductors</title><author>KLEIN, M. V ; DIERKER, S. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-bd1ba3f53e46601556b92929629e196c9d811a42ee416d36332376e8130e4f023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>360104 - Metals & Alloys- Physical Properties</topic><topic>656102 - Solid State Physics- Superconductivity- Acoustic, Electronic, Magnetic, Optical, & Thermal Phenomena- (-1987)</topic><topic>ABSOLUTE ZERO TEMPERATURE</topic><topic>ANISOTROPY</topic><topic>BCS THEORY</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>COUPLING</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>ELECTRICAL PROPERTIES</topic><topic>ELEMENTS</topic><topic>ENERGY</topic><topic>ENERGY GAP</topic><topic>Exact sciences and technology</topic><topic>EXCITONS</topic><topic>MATERIALS SCIENCE</topic><topic>METALS</topic><topic>Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.)</topic><topic>NIOBIUM</topic><topic>NIOBIUM COMPOUNDS</topic><topic>PHONONS</topic><topic>PHYSICAL PROPERTIES</topic><topic>Physics</topic><topic>QUASI PARTICLES</topic><topic>RAMAN EFFECT</topic><topic>REFRACTORY METAL COMPOUNDS</topic><topic>SILICIDES</topic><topic>SILICON COMPOUNDS</topic><topic>Superconducting materials (excluding high-tc compounds)</topic><topic>SUPERCONDUCTIVITY</topic><topic>SUPERCONDUCTORS</topic><topic>Theory and models of superconducting state</topic><topic>THRESHOLD ENERGY</topic><topic>TIN COMPOUNDS</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>TRANSITION ELEMENTS</topic><topic>VANADIUM COMPOUNDS</topic><topic>VANADIUM SILICIDES</topic><toplevel>online_resources</toplevel><creatorcontrib>KLEIN, M. V</creatorcontrib><creatorcontrib>DIERKER, S. B</creatorcontrib><creatorcontrib>Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois 61801</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. B: Condens. Matter; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KLEIN, M. V</au><au>DIERKER, S. B</au><aucorp>Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois 61801</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of Raman scattering in superconductors</atitle><jtitle>Phys. Rev. B: Condens. Matter; (United States)</jtitle><date>1984-05-01</date><risdate>1984</risdate><volume>29</volume><issue>9</issue><spage>4976</spage><epage>4991</epage><pages>4976-4991</pages><issn>0163-1829</issn><eissn>1095-3795</eissn><coden>PRBMDO</coden><abstract>The electronic Raman scattering by pairs of quasiparticles is calculated at zero temp., generalizing previous calculations that were based on the Bardeen--Cooper--Schrieffer model of a superconductor. Analytical and numerical results are presented for the spectrum as a function of wave vector q, and an integration is performed over q sub z to include the effect of a finite optical penetration depth. Allowing for gap anisotropy, the results are corrected for vertex and Coulomb polarization effects. The theoretical results for finite q are used to calculate spectra for Nb sub 3 Sn, V sub 3 Si, and Nb, neglecting gap anisotropy. Experimental data are presented for V sub 3 Si and Nb. The data for V sub 3 Si are fit to a zero-q theory that includes gap anisotropy, with results similar to those presented earlier for Nb sub 3 Sn. The role of possible excitons on the Raman spectra is examined. These theoretical results are then used to discuss the self-energy of a Raman-active optical phonon in a superconductor. 34 ref.--AA</abstract><cop>Woodbury, NY</cop><pub>American Physical Society</pub><doi>10.1103/physrevb.29.4976</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-1829 |
ispartof | Phys. Rev. B: Condens. Matter; (United States), 1984-05, Vol.29 (9), p.4976-4991 |
issn | 0163-1829 1095-3795 |
language | eng |
recordid | cdi_proquest_miscellaneous_24455996 |
source | American Physical Society Journals |
subjects | 360104 - Metals & Alloys- Physical Properties 656102 - Solid State Physics- Superconductivity- Acoustic, Electronic, Magnetic, Optical, & Thermal Phenomena- (-1987) ABSOLUTE ZERO TEMPERATURE ANISOTROPY BCS THEORY CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Condensed matter: electronic structure, electrical, magnetic, and optical properties COUPLING ELECTRIC CONDUCTIVITY ELECTRICAL PROPERTIES ELEMENTS ENERGY ENERGY GAP Exact sciences and technology EXCITONS MATERIALS SCIENCE METALS Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.) NIOBIUM NIOBIUM COMPOUNDS PHONONS PHYSICAL PROPERTIES Physics QUASI PARTICLES RAMAN EFFECT REFRACTORY METAL COMPOUNDS SILICIDES SILICON COMPOUNDS Superconducting materials (excluding high-tc compounds) SUPERCONDUCTIVITY SUPERCONDUCTORS Theory and models of superconducting state THRESHOLD ENERGY TIN COMPOUNDS TRANSITION ELEMENT COMPOUNDS TRANSITION ELEMENTS VANADIUM COMPOUNDS VANADIUM SILICIDES |
title | Theory of Raman scattering in superconductors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20Raman%20scattering%20in%20superconductors&rft.jtitle=Phys.%20Rev.%20B:%20Condens.%20Matter;%20(United%20States)&rft.au=KLEIN,%20M.%20V&rft.aucorp=Department%20of%20Physics%20and%20Materials%20Research%20Laboratory,%20University%20of%20Illinois%20at%20Urbana-Champaign,%20104%20S.%20Goodwin%20Avenue,%20Urbana,%20Illinois%2061801&rft.date=1984-05-01&rft.volume=29&rft.issue=9&rft.spage=4976&rft.epage=4991&rft.pages=4976-4991&rft.issn=0163-1829&rft.eissn=1095-3795&rft.coden=PRBMDO&rft_id=info:doi/10.1103/physrevb.29.4976&rft_dat=%3Cproquest_osti_%3E24455996%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24455996&rft_id=info:pmid/&rfr_iscdi=true |