Theory of Raman scattering in superconductors

The electronic Raman scattering by pairs of quasiparticles is calculated at zero temp., generalizing previous calculations that were based on the Bardeen--Cooper--Schrieffer model of a superconductor. Analytical and numerical results are presented for the spectrum as a function of wave vector q, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Rev. B: Condens. Matter; (United States) 1984-05, Vol.29 (9), p.4976-4991
Hauptverfasser: KLEIN, M. V, DIERKER, S. B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4991
container_issue 9
container_start_page 4976
container_title Phys. Rev. B: Condens. Matter; (United States)
container_volume 29
creator KLEIN, M. V
DIERKER, S. B
description The electronic Raman scattering by pairs of quasiparticles is calculated at zero temp., generalizing previous calculations that were based on the Bardeen--Cooper--Schrieffer model of a superconductor. Analytical and numerical results are presented for the spectrum as a function of wave vector q, and an integration is performed over q sub z to include the effect of a finite optical penetration depth. Allowing for gap anisotropy, the results are corrected for vertex and Coulomb polarization effects. The theoretical results for finite q are used to calculate spectra for Nb sub 3 Sn, V sub 3 Si, and Nb, neglecting gap anisotropy. Experimental data are presented for V sub 3 Si and Nb. The data for V sub 3 Si are fit to a zero-q theory that includes gap anisotropy, with results similar to those presented earlier for Nb sub 3 Sn. The role of possible excitons on the Raman spectra is examined. These theoretical results are then used to discuss the self-energy of a Raman-active optical phonon in a superconductor. 34 ref.--AA
doi_str_mv 10.1103/physrevb.29.4976
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_24455996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24455996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-bd1ba3f53e46601556b92929629e196c9d811a42ee416d36332376e8130e4f023</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3j4uIt6357uao4hcUlFLPIZudtZHtZk2yhf57U1qcOQwDzzsMD0LXBM8Iwex-WO9igG09o2rG1VyeoAnBSpRsrsQpmmAiWUkqqs7RRYw_OBeVaoLK1Rp82BW-LZZmY_oiWpMSBNd_Fy5v4wDB-r4ZbfIhXqKz1nQRro5zir5enldPb-Xi4_X96WFRWqZ4KuuG1Ia1ggGXEhMhZK1obkkVECWtaipCDKcAnMiGScYom0uoCMPAW0zZFN0c7vqYnI7WJbDr_EYPNmlJmaBYZujuAA3B_44Qk964aKHrTA9-jJpyLoRSexAfQBt8zJJaPQS3MWGnCdZ7efozy1vC9lFTpffycuT2eNtkIV0bTG9d_M9VihPMKfsD2jZuzw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24455996</pqid></control><display><type>article</type><title>Theory of Raman scattering in superconductors</title><source>American Physical Society Journals</source><creator>KLEIN, M. V ; DIERKER, S. B</creator><creatorcontrib>KLEIN, M. V ; DIERKER, S. B ; Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois 61801</creatorcontrib><description>The electronic Raman scattering by pairs of quasiparticles is calculated at zero temp., generalizing previous calculations that were based on the Bardeen--Cooper--Schrieffer model of a superconductor. Analytical and numerical results are presented for the spectrum as a function of wave vector q, and an integration is performed over q sub z to include the effect of a finite optical penetration depth. Allowing for gap anisotropy, the results are corrected for vertex and Coulomb polarization effects. The theoretical results for finite q are used to calculate spectra for Nb sub 3 Sn, V sub 3 Si, and Nb, neglecting gap anisotropy. Experimental data are presented for V sub 3 Si and Nb. The data for V sub 3 Si are fit to a zero-q theory that includes gap anisotropy, with results similar to those presented earlier for Nb sub 3 Sn. The role of possible excitons on the Raman spectra is examined. These theoretical results are then used to discuss the self-energy of a Raman-active optical phonon in a superconductor. 34 ref.--AA</description><identifier>ISSN: 0163-1829</identifier><identifier>EISSN: 1095-3795</identifier><identifier>DOI: 10.1103/physrevb.29.4976</identifier><identifier>CODEN: PRBMDO</identifier><language>eng</language><publisher>Woodbury, NY: American Physical Society</publisher><subject>360104 - Metals &amp; Alloys- Physical Properties ; 656102 - Solid State Physics- Superconductivity- Acoustic, Electronic, Magnetic, Optical, &amp; Thermal Phenomena- (-1987) ; ABSOLUTE ZERO TEMPERATURE ; ANISOTROPY ; BCS THEORY ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; COUPLING ; ELECTRIC CONDUCTIVITY ; ELECTRICAL PROPERTIES ; ELEMENTS ; ENERGY ; ENERGY GAP ; Exact sciences and technology ; EXCITONS ; MATERIALS SCIENCE ; METALS ; Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.) ; NIOBIUM ; NIOBIUM COMPOUNDS ; PHONONS ; PHYSICAL PROPERTIES ; Physics ; QUASI PARTICLES ; RAMAN EFFECT ; REFRACTORY METAL COMPOUNDS ; SILICIDES ; SILICON COMPOUNDS ; Superconducting materials (excluding high-tc compounds) ; SUPERCONDUCTIVITY ; SUPERCONDUCTORS ; Theory and models of superconducting state ; THRESHOLD ENERGY ; TIN COMPOUNDS ; TRANSITION ELEMENT COMPOUNDS ; TRANSITION ELEMENTS ; VANADIUM COMPOUNDS ; VANADIUM SILICIDES</subject><ispartof>Phys. Rev. B: Condens. Matter; (United States), 1984-05, Vol.29 (9), p.4976-4991</ispartof><rights>1985 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-bd1ba3f53e46601556b92929629e196c9d811a42ee416d36332376e8130e4f023</citedby><cites>FETCH-LOGICAL-c394t-bd1ba3f53e46601556b92929629e196c9d811a42ee416d36332376e8130e4f023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8941042$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6235206$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>KLEIN, M. V</creatorcontrib><creatorcontrib>DIERKER, S. B</creatorcontrib><creatorcontrib>Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois 61801</creatorcontrib><title>Theory of Raman scattering in superconductors</title><title>Phys. Rev. B: Condens. Matter; (United States)</title><description>The electronic Raman scattering by pairs of quasiparticles is calculated at zero temp., generalizing previous calculations that were based on the Bardeen--Cooper--Schrieffer model of a superconductor. Analytical and numerical results are presented for the spectrum as a function of wave vector q, and an integration is performed over q sub z to include the effect of a finite optical penetration depth. Allowing for gap anisotropy, the results are corrected for vertex and Coulomb polarization effects. The theoretical results for finite q are used to calculate spectra for Nb sub 3 Sn, V sub 3 Si, and Nb, neglecting gap anisotropy. Experimental data are presented for V sub 3 Si and Nb. The data for V sub 3 Si are fit to a zero-q theory that includes gap anisotropy, with results similar to those presented earlier for Nb sub 3 Sn. The role of possible excitons on the Raman spectra is examined. These theoretical results are then used to discuss the self-energy of a Raman-active optical phonon in a superconductor. 34 ref.--AA</description><subject>360104 - Metals &amp; Alloys- Physical Properties</subject><subject>656102 - Solid State Physics- Superconductivity- Acoustic, Electronic, Magnetic, Optical, &amp; Thermal Phenomena- (-1987)</subject><subject>ABSOLUTE ZERO TEMPERATURE</subject><subject>ANISOTROPY</subject><subject>BCS THEORY</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>COUPLING</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>ELECTRICAL PROPERTIES</subject><subject>ELEMENTS</subject><subject>ENERGY</subject><subject>ENERGY GAP</subject><subject>Exact sciences and technology</subject><subject>EXCITONS</subject><subject>MATERIALS SCIENCE</subject><subject>METALS</subject><subject>Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.)</subject><subject>NIOBIUM</subject><subject>NIOBIUM COMPOUNDS</subject><subject>PHONONS</subject><subject>PHYSICAL PROPERTIES</subject><subject>Physics</subject><subject>QUASI PARTICLES</subject><subject>RAMAN EFFECT</subject><subject>REFRACTORY METAL COMPOUNDS</subject><subject>SILICIDES</subject><subject>SILICON COMPOUNDS</subject><subject>Superconducting materials (excluding high-tc compounds)</subject><subject>SUPERCONDUCTIVITY</subject><subject>SUPERCONDUCTORS</subject><subject>Theory and models of superconducting state</subject><subject>THRESHOLD ENERGY</subject><subject>TIN COMPOUNDS</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>TRANSITION ELEMENTS</subject><subject>VANADIUM COMPOUNDS</subject><subject>VANADIUM SILICIDES</subject><issn>0163-1829</issn><issn>1095-3795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3j4uIt6357uao4hcUlFLPIZudtZHtZk2yhf57U1qcOQwDzzsMD0LXBM8Iwex-WO9igG09o2rG1VyeoAnBSpRsrsQpmmAiWUkqqs7RRYw_OBeVaoLK1Rp82BW-LZZmY_oiWpMSBNd_Fy5v4wDB-r4ZbfIhXqKz1nQRro5zir5enldPb-Xi4_X96WFRWqZ4KuuG1Ia1ggGXEhMhZK1obkkVECWtaipCDKcAnMiGScYom0uoCMPAW0zZFN0c7vqYnI7WJbDr_EYPNmlJmaBYZujuAA3B_44Qk964aKHrTA9-jJpyLoRSexAfQBt8zJJaPQS3MWGnCdZ7efozy1vC9lFTpffycuT2eNtkIV0bTG9d_M9VihPMKfsD2jZuzw</recordid><startdate>19840501</startdate><enddate>19840501</enddate><creator>KLEIN, M. V</creator><creator>DIERKER, S. B</creator><general>American Physical Society</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>19840501</creationdate><title>Theory of Raman scattering in superconductors</title><author>KLEIN, M. V ; DIERKER, S. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-bd1ba3f53e46601556b92929629e196c9d811a42ee416d36332376e8130e4f023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>360104 - Metals &amp; Alloys- Physical Properties</topic><topic>656102 - Solid State Physics- Superconductivity- Acoustic, Electronic, Magnetic, Optical, &amp; Thermal Phenomena- (-1987)</topic><topic>ABSOLUTE ZERO TEMPERATURE</topic><topic>ANISOTROPY</topic><topic>BCS THEORY</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>COUPLING</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>ELECTRICAL PROPERTIES</topic><topic>ELEMENTS</topic><topic>ENERGY</topic><topic>ENERGY GAP</topic><topic>Exact sciences and technology</topic><topic>EXCITONS</topic><topic>MATERIALS SCIENCE</topic><topic>METALS</topic><topic>Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.)</topic><topic>NIOBIUM</topic><topic>NIOBIUM COMPOUNDS</topic><topic>PHONONS</topic><topic>PHYSICAL PROPERTIES</topic><topic>Physics</topic><topic>QUASI PARTICLES</topic><topic>RAMAN EFFECT</topic><topic>REFRACTORY METAL COMPOUNDS</topic><topic>SILICIDES</topic><topic>SILICON COMPOUNDS</topic><topic>Superconducting materials (excluding high-tc compounds)</topic><topic>SUPERCONDUCTIVITY</topic><topic>SUPERCONDUCTORS</topic><topic>Theory and models of superconducting state</topic><topic>THRESHOLD ENERGY</topic><topic>TIN COMPOUNDS</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>TRANSITION ELEMENTS</topic><topic>VANADIUM COMPOUNDS</topic><topic>VANADIUM SILICIDES</topic><toplevel>online_resources</toplevel><creatorcontrib>KLEIN, M. V</creatorcontrib><creatorcontrib>DIERKER, S. B</creatorcontrib><creatorcontrib>Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois 61801</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. B: Condens. Matter; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KLEIN, M. V</au><au>DIERKER, S. B</au><aucorp>Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois 61801</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of Raman scattering in superconductors</atitle><jtitle>Phys. Rev. B: Condens. Matter; (United States)</jtitle><date>1984-05-01</date><risdate>1984</risdate><volume>29</volume><issue>9</issue><spage>4976</spage><epage>4991</epage><pages>4976-4991</pages><issn>0163-1829</issn><eissn>1095-3795</eissn><coden>PRBMDO</coden><abstract>The electronic Raman scattering by pairs of quasiparticles is calculated at zero temp., generalizing previous calculations that were based on the Bardeen--Cooper--Schrieffer model of a superconductor. Analytical and numerical results are presented for the spectrum as a function of wave vector q, and an integration is performed over q sub z to include the effect of a finite optical penetration depth. Allowing for gap anisotropy, the results are corrected for vertex and Coulomb polarization effects. The theoretical results for finite q are used to calculate spectra for Nb sub 3 Sn, V sub 3 Si, and Nb, neglecting gap anisotropy. Experimental data are presented for V sub 3 Si and Nb. The data for V sub 3 Si are fit to a zero-q theory that includes gap anisotropy, with results similar to those presented earlier for Nb sub 3 Sn. The role of possible excitons on the Raman spectra is examined. These theoretical results are then used to discuss the self-energy of a Raman-active optical phonon in a superconductor. 34 ref.--AA</abstract><cop>Woodbury, NY</cop><pub>American Physical Society</pub><doi>10.1103/physrevb.29.4976</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-1829
ispartof Phys. Rev. B: Condens. Matter; (United States), 1984-05, Vol.29 (9), p.4976-4991
issn 0163-1829
1095-3795
language eng
recordid cdi_proquest_miscellaneous_24455996
source American Physical Society Journals
subjects 360104 - Metals & Alloys- Physical Properties
656102 - Solid State Physics- Superconductivity- Acoustic, Electronic, Magnetic, Optical, & Thermal Phenomena- (-1987)
ABSOLUTE ZERO TEMPERATURE
ANISOTROPY
BCS THEORY
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Condensed matter: electronic structure, electrical, magnetic, and optical properties
COUPLING
ELECTRIC CONDUCTIVITY
ELECTRICAL PROPERTIES
ELEMENTS
ENERGY
ENERGY GAP
Exact sciences and technology
EXCITONS
MATERIALS SCIENCE
METALS
Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.)
NIOBIUM
NIOBIUM COMPOUNDS
PHONONS
PHYSICAL PROPERTIES
Physics
QUASI PARTICLES
RAMAN EFFECT
REFRACTORY METAL COMPOUNDS
SILICIDES
SILICON COMPOUNDS
Superconducting materials (excluding high-tc compounds)
SUPERCONDUCTIVITY
SUPERCONDUCTORS
Theory and models of superconducting state
THRESHOLD ENERGY
TIN COMPOUNDS
TRANSITION ELEMENT COMPOUNDS
TRANSITION ELEMENTS
VANADIUM COMPOUNDS
VANADIUM SILICIDES
title Theory of Raman scattering in superconductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20Raman%20scattering%20in%20superconductors&rft.jtitle=Phys.%20Rev.%20B:%20Condens.%20Matter;%20(United%20States)&rft.au=KLEIN,%20M.%20V&rft.aucorp=Department%20of%20Physics%20and%20Materials%20Research%20Laboratory,%20University%20of%20Illinois%20at%20Urbana-Champaign,%20104%20S.%20Goodwin%20Avenue,%20Urbana,%20Illinois%2061801&rft.date=1984-05-01&rft.volume=29&rft.issue=9&rft.spage=4976&rft.epage=4991&rft.pages=4976-4991&rft.issn=0163-1829&rft.eissn=1095-3795&rft.coden=PRBMDO&rft_id=info:doi/10.1103/physrevb.29.4976&rft_dat=%3Cproquest_osti_%3E24455996%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24455996&rft_id=info:pmid/&rfr_iscdi=true