M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines

[Display omitted] Artificial intelligence (AI) has the potential to reshape pharmaceutical formulation development through its ability to analyze and continuously monitor large datasets. Fused deposition modeling (FDM) three-dimensional printing (3DP) has made significant advancements in the field o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2020-11, Vol.590, p.119837-119837, Article 119837
Hauptverfasser: Elbadawi, Moe, Muñiz Castro, Brais, Gavins, Francesca K.H., Ong, Jun Jie, Gaisford, Simon, Pérez, Gilberto, Basit, Abdul W., Cabalar, Pedro, Goyanes, Alvaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119837
container_issue
container_start_page 119837
container_title International journal of pharmaceutics
container_volume 590
creator Elbadawi, Moe
Muñiz Castro, Brais
Gavins, Francesca K.H.
Ong, Jun Jie
Gaisford, Simon
Pérez, Gilberto
Basit, Abdul W.
Cabalar, Pedro
Goyanes, Alvaro
description [Display omitted] Artificial intelligence (AI) has the potential to reshape pharmaceutical formulation development through its ability to analyze and continuously monitor large datasets. Fused deposition modeling (FDM) three-dimensional printing (3DP) has made significant advancements in the field of oral drug delivery with personalized drug-loaded formulations being designed, developed and dispensed for the needs of the patient. The FDM 3DP process begins with the production of drug-loaded filaments by hot melt extrusion (HME), followed by the printing of a drug product using a FDM 3D printer. However, the optimization of the fabrication parameters is a time-consuming, empirical trial approach, requiring expert knowledge. Here, M3DISEEN, a web-based pharmaceutical software, was developed to accelerate FDM 3D printing using AI machine learning techniques (MLTs). In total, 614 drug-loaded formulations were designed from a comprehensive list of 145 different pharmaceutical excipients, 3D printed and assessed in-house. To build the predictive tool, a dataset was constructed and models were trained and tested at a ratio of 75:25. Significantly, the AI models predicted key fabrication parameters with accuracies of 76% and 67% for the printability and the filament characteristics, respectively. Furthermore, the AI models predicted the HME and FDM processing temperatures with a mean absolute error of 8.9 °C and 8.3 °C, respectively. Strikingly, the AI models achieved high levels of accuracy by solely inputting the pharmaceutical excipient trade names. Therefore, AI provides an effective holistic modeling technology and software to streamline and advance 3DP as a significant technology within drug development. M3DISEEN is available at (http://m3diseen.com/predictions/).
doi_str_mv 10.1016/j.ijpharm.2020.119837
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_miscellaneous_2445431036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037851732030822X</els_id><sourcerecordid>2445431036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-13309c1eecee3e6979e018c2ce54bdb0ea5e8e2a7f7ebce0269d1b1f855fd2793</originalsourceid><addsrcrecordid>eNqNkE2LFDEURYMoTjv6E4QsBamefFQqiRsZelodGHWhrlyEVOqVnaYqaZP0yPx701QzW10lXO55XA5CrylZU0K7q_3a7w87m-Y1I6xmVCsun6AVVZI3vJXdU7QiXKpGUMkv0Iuc94SQjlH-HF1wpjvKtFihn5_5ze237fbLO3yNQ7yHCc_W7XwAPIFNwYdf2B4OKdYQjzHhQ4LBu3LKyw4wv6mJD8X2fvLlAccRz6dCPZBfomejnTK8Or-X6MeH7ffNp-bu68fbzfVd47jSpaGcE-0ogAPg0GmpgVDlmAPR9kNPwApQwKwcJfQOCOv0QHs6KiHGgUnNL9Gb5W6d-fsIuZjZZwfTZAPEYzasbUXLKeFdrYql6lLMOcFo6vrZpgdDiTl5NXtz9mpOXs3itXJq4f5AH8fsPAQHj2wVKzQVrVb1R_jGF1t8DJt4DKWib_8fre33SxuqsHsPyZyJwSdwxQzR_2PqX3oeoro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445431036</pqid></control><display><type>article</type><title>M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines</title><source>Access via ScienceDirect (Elsevier)</source><creator>Elbadawi, Moe ; Muñiz Castro, Brais ; Gavins, Francesca K.H. ; Ong, Jun Jie ; Gaisford, Simon ; Pérez, Gilberto ; Basit, Abdul W. ; Cabalar, Pedro ; Goyanes, Alvaro</creator><creatorcontrib>Elbadawi, Moe ; Muñiz Castro, Brais ; Gavins, Francesca K.H. ; Ong, Jun Jie ; Gaisford, Simon ; Pérez, Gilberto ; Basit, Abdul W. ; Cabalar, Pedro ; Goyanes, Alvaro</creatorcontrib><description>[Display omitted] Artificial intelligence (AI) has the potential to reshape pharmaceutical formulation development through its ability to analyze and continuously monitor large datasets. Fused deposition modeling (FDM) three-dimensional printing (3DP) has made significant advancements in the field of oral drug delivery with personalized drug-loaded formulations being designed, developed and dispensed for the needs of the patient. The FDM 3DP process begins with the production of drug-loaded filaments by hot melt extrusion (HME), followed by the printing of a drug product using a FDM 3D printer. However, the optimization of the fabrication parameters is a time-consuming, empirical trial approach, requiring expert knowledge. Here, M3DISEEN, a web-based pharmaceutical software, was developed to accelerate FDM 3D printing using AI machine learning techniques (MLTs). In total, 614 drug-loaded formulations were designed from a comprehensive list of 145 different pharmaceutical excipients, 3D printed and assessed in-house. To build the predictive tool, a dataset was constructed and models were trained and tested at a ratio of 75:25. Significantly, the AI models predicted key fabrication parameters with accuracies of 76% and 67% for the printability and the filament characteristics, respectively. Furthermore, the AI models predicted the HME and FDM processing temperatures with a mean absolute error of 8.9 °C and 8.3 °C, respectively. Strikingly, the AI models achieved high levels of accuracy by solely inputting the pharmaceutical excipient trade names. Therefore, AI provides an effective holistic modeling technology and software to streamline and advance 3DP as a significant technology within drug development. M3DISEEN is available at (http://m3diseen.com/predictions/).</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2020.119837</identifier><identifier>PMID: 32961295</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>3D printed drug products ; Additive manufacturing ; Feature engineering ; Fused filament fabrication ; Gastrointestinal drug delivery ; Life Sciences &amp; Biomedicine ; Material extrusion ; Personalized pharmaceuticals and medicines ; Pharmacology &amp; Pharmacy ; Science &amp; Technology</subject><ispartof>International journal of pharmaceutics, 2020-11, Vol.590, p.119837-119837, Article 119837</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>121</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000591549800003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c389t-13309c1eecee3e6979e018c2ce54bdb0ea5e8e2a7f7ebce0269d1b1f855fd2793</citedby><cites>FETCH-LOGICAL-c389t-13309c1eecee3e6979e018c2ce54bdb0ea5e8e2a7f7ebce0269d1b1f855fd2793</cites><orcidid>0000-0003-1000-3208 ; 0000-0001-6226-5432 ; 0000-0002-5368-6603 ; 0000-0001-9341-9561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpharm.2020.119837$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Elbadawi, Moe</creatorcontrib><creatorcontrib>Muñiz Castro, Brais</creatorcontrib><creatorcontrib>Gavins, Francesca K.H.</creatorcontrib><creatorcontrib>Ong, Jun Jie</creatorcontrib><creatorcontrib>Gaisford, Simon</creatorcontrib><creatorcontrib>Pérez, Gilberto</creatorcontrib><creatorcontrib>Basit, Abdul W.</creatorcontrib><creatorcontrib>Cabalar, Pedro</creatorcontrib><creatorcontrib>Goyanes, Alvaro</creatorcontrib><title>M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines</title><title>International journal of pharmaceutics</title><addtitle>INT J PHARMACEUT</addtitle><description>[Display omitted] Artificial intelligence (AI) has the potential to reshape pharmaceutical formulation development through its ability to analyze and continuously monitor large datasets. Fused deposition modeling (FDM) three-dimensional printing (3DP) has made significant advancements in the field of oral drug delivery with personalized drug-loaded formulations being designed, developed and dispensed for the needs of the patient. The FDM 3DP process begins with the production of drug-loaded filaments by hot melt extrusion (HME), followed by the printing of a drug product using a FDM 3D printer. However, the optimization of the fabrication parameters is a time-consuming, empirical trial approach, requiring expert knowledge. Here, M3DISEEN, a web-based pharmaceutical software, was developed to accelerate FDM 3D printing using AI machine learning techniques (MLTs). In total, 614 drug-loaded formulations were designed from a comprehensive list of 145 different pharmaceutical excipients, 3D printed and assessed in-house. To build the predictive tool, a dataset was constructed and models were trained and tested at a ratio of 75:25. Significantly, the AI models predicted key fabrication parameters with accuracies of 76% and 67% for the printability and the filament characteristics, respectively. Furthermore, the AI models predicted the HME and FDM processing temperatures with a mean absolute error of 8.9 °C and 8.3 °C, respectively. Strikingly, the AI models achieved high levels of accuracy by solely inputting the pharmaceutical excipient trade names. Therefore, AI provides an effective holistic modeling technology and software to streamline and advance 3DP as a significant technology within drug development. M3DISEEN is available at (http://m3diseen.com/predictions/).</description><subject>3D printed drug products</subject><subject>Additive manufacturing</subject><subject>Feature engineering</subject><subject>Fused filament fabrication</subject><subject>Gastrointestinal drug delivery</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Material extrusion</subject><subject>Personalized pharmaceuticals and medicines</subject><subject>Pharmacology &amp; Pharmacy</subject><subject>Science &amp; Technology</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE2LFDEURYMoTjv6E4QsBamefFQqiRsZelodGHWhrlyEVOqVnaYqaZP0yPx701QzW10lXO55XA5CrylZU0K7q_3a7w87m-Y1I6xmVCsun6AVVZI3vJXdU7QiXKpGUMkv0Iuc94SQjlH-HF1wpjvKtFihn5_5ze237fbLO3yNQ7yHCc_W7XwAPIFNwYdf2B4OKdYQjzHhQ4LBu3LKyw4wv6mJD8X2fvLlAccRz6dCPZBfomejnTK8Or-X6MeH7ffNp-bu68fbzfVd47jSpaGcE-0ogAPg0GmpgVDlmAPR9kNPwApQwKwcJfQOCOv0QHs6KiHGgUnNL9Gb5W6d-fsIuZjZZwfTZAPEYzasbUXLKeFdrYql6lLMOcFo6vrZpgdDiTl5NXtz9mpOXs3itXJq4f5AH8fsPAQHj2wVKzQVrVb1R_jGF1t8DJt4DKWib_8fre33SxuqsHsPyZyJwSdwxQzR_2PqX3oeoro</recordid><startdate>20201130</startdate><enddate>20201130</enddate><creator>Elbadawi, Moe</creator><creator>Muñiz Castro, Brais</creator><creator>Gavins, Francesca K.H.</creator><creator>Ong, Jun Jie</creator><creator>Gaisford, Simon</creator><creator>Pérez, Gilberto</creator><creator>Basit, Abdul W.</creator><creator>Cabalar, Pedro</creator><creator>Goyanes, Alvaro</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1000-3208</orcidid><orcidid>https://orcid.org/0000-0001-6226-5432</orcidid><orcidid>https://orcid.org/0000-0002-5368-6603</orcidid><orcidid>https://orcid.org/0000-0001-9341-9561</orcidid></search><sort><creationdate>20201130</creationdate><title>M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines</title><author>Elbadawi, Moe ; Muñiz Castro, Brais ; Gavins, Francesca K.H. ; Ong, Jun Jie ; Gaisford, Simon ; Pérez, Gilberto ; Basit, Abdul W. ; Cabalar, Pedro ; Goyanes, Alvaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-13309c1eecee3e6979e018c2ce54bdb0ea5e8e2a7f7ebce0269d1b1f855fd2793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D printed drug products</topic><topic>Additive manufacturing</topic><topic>Feature engineering</topic><topic>Fused filament fabrication</topic><topic>Gastrointestinal drug delivery</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Material extrusion</topic><topic>Personalized pharmaceuticals and medicines</topic><topic>Pharmacology &amp; Pharmacy</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elbadawi, Moe</creatorcontrib><creatorcontrib>Muñiz Castro, Brais</creatorcontrib><creatorcontrib>Gavins, Francesca K.H.</creatorcontrib><creatorcontrib>Ong, Jun Jie</creatorcontrib><creatorcontrib>Gaisford, Simon</creatorcontrib><creatorcontrib>Pérez, Gilberto</creatorcontrib><creatorcontrib>Basit, Abdul W.</creatorcontrib><creatorcontrib>Cabalar, Pedro</creatorcontrib><creatorcontrib>Goyanes, Alvaro</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elbadawi, Moe</au><au>Muñiz Castro, Brais</au><au>Gavins, Francesca K.H.</au><au>Ong, Jun Jie</au><au>Gaisford, Simon</au><au>Pérez, Gilberto</au><au>Basit, Abdul W.</au><au>Cabalar, Pedro</au><au>Goyanes, Alvaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines</atitle><jtitle>International journal of pharmaceutics</jtitle><stitle>INT J PHARMACEUT</stitle><date>2020-11-30</date><risdate>2020</risdate><volume>590</volume><spage>119837</spage><epage>119837</epage><pages>119837-119837</pages><artnum>119837</artnum><issn>0378-5173</issn><eissn>1873-3476</eissn><abstract>[Display omitted] Artificial intelligence (AI) has the potential to reshape pharmaceutical formulation development through its ability to analyze and continuously monitor large datasets. Fused deposition modeling (FDM) three-dimensional printing (3DP) has made significant advancements in the field of oral drug delivery with personalized drug-loaded formulations being designed, developed and dispensed for the needs of the patient. The FDM 3DP process begins with the production of drug-loaded filaments by hot melt extrusion (HME), followed by the printing of a drug product using a FDM 3D printer. However, the optimization of the fabrication parameters is a time-consuming, empirical trial approach, requiring expert knowledge. Here, M3DISEEN, a web-based pharmaceutical software, was developed to accelerate FDM 3D printing using AI machine learning techniques (MLTs). In total, 614 drug-loaded formulations were designed from a comprehensive list of 145 different pharmaceutical excipients, 3D printed and assessed in-house. To build the predictive tool, a dataset was constructed and models were trained and tested at a ratio of 75:25. Significantly, the AI models predicted key fabrication parameters with accuracies of 76% and 67% for the printability and the filament characteristics, respectively. Furthermore, the AI models predicted the HME and FDM processing temperatures with a mean absolute error of 8.9 °C and 8.3 °C, respectively. Strikingly, the AI models achieved high levels of accuracy by solely inputting the pharmaceutical excipient trade names. Therefore, AI provides an effective holistic modeling technology and software to streamline and advance 3DP as a significant technology within drug development. M3DISEEN is available at (http://m3diseen.com/predictions/).</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><pmid>32961295</pmid><doi>10.1016/j.ijpharm.2020.119837</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1000-3208</orcidid><orcidid>https://orcid.org/0000-0001-6226-5432</orcidid><orcidid>https://orcid.org/0000-0002-5368-6603</orcidid><orcidid>https://orcid.org/0000-0001-9341-9561</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-5173
ispartof International journal of pharmaceutics, 2020-11, Vol.590, p.119837-119837, Article 119837
issn 0378-5173
1873-3476
language eng
recordid cdi_proquest_miscellaneous_2445431036
source Access via ScienceDirect (Elsevier)
subjects 3D printed drug products
Additive manufacturing
Feature engineering
Fused filament fabrication
Gastrointestinal drug delivery
Life Sciences & Biomedicine
Material extrusion
Personalized pharmaceuticals and medicines
Pharmacology & Pharmacy
Science & Technology
title M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=M3DISEEN:%20A%20novel%20machine%20learning%20approach%20for%20predicting%20the%203D%20printability%20of%20medicines&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Elbadawi,%20Moe&rft.date=2020-11-30&rft.volume=590&rft.spage=119837&rft.epage=119837&rft.pages=119837-119837&rft.artnum=119837&rft.issn=0378-5173&rft.eissn=1873-3476&rft_id=info:doi/10.1016/j.ijpharm.2020.119837&rft_dat=%3Cproquest_webof%3E2445431036%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2445431036&rft_id=info:pmid/32961295&rft_els_id=S037851732030822X&rfr_iscdi=true