Phase‐Junction Electrocatalysts towards Enhanced Hydrogen Evolution Reaction in Alkaline Media
To ensure sustainable hydrogen production by water electrolysis, robust, earth‐abundant, and high‐efficient electrocatalysts are required. Constructing a hybrid system could lead to further improvement in electrocatalytic activity. Interface engineering in composite catalysts is thus critical to det...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2021-01, Vol.60 (1), p.259-267 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 267 |
---|---|
container_issue | 1 |
container_start_page | 259 |
container_title | Angewandte Chemie International Edition |
container_volume | 60 |
creator | Fu, Qiang Wang, Xianjie Han, Jiecai Zhong, Jun Zhang, Tongrui Yao, Tai Xu, Chengyan Gao, Tangling Xi, Shibo Liang, Ce Xu, Lingling Xu, Ping Song, Bo |
description | To ensure sustainable hydrogen production by water electrolysis, robust, earth‐abundant, and high‐efficient electrocatalysts are required. Constructing a hybrid system could lead to further improvement in electrocatalytic activity. Interface engineering in composite catalysts is thus critical to determine the performance, and the phase‐junction interface should improve the catalytic activity. Here, we show that nickel diphosphide phase junction (c‐NiP2/m‐NiP2) is an effective electrocatalyst for hydrogen production in alkaline media. The overpotential (at 10 mA cm−2) for NiP2‐650 (c/m) in alkaline media could be significantly reduced by 26 % and 96 % compared with c‐NiP2 and m‐NiP2, respectively. The enhancement of catalytic activity should be attributed to the strong water dissociation ability and the rearrangement of electrons around the phase junction, which markedly improved the Volmer step and benefited the reduction process of adsorbed protons.
Constructing phase‐junction electrocatalysts could effectively accelerate the Volmer step and modulate the electronic structure at the interface. NiP2‐650(c/m) shows an overpotential η10 of 134 mV vs. RHE at 10 mA cm−2 and a Tafel slope of 67 mV dec−1, which is significantly reduced by 26 % and 96 % compared with c‐NiP2 and m‐NiP2, respectively. |
doi_str_mv | 10.1002/anie.202011318 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2445424151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2445424151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4108-ab74ac4d961001508a9f7c3f130e320b47c4f945d19383ca682508478e2d438a3</originalsourceid><addsrcrecordid>eNqF0L1OHDEUBWArIgqwSZsSjUSTZhb_zdouV2j5E4QoSurJXc-dMOC1wZ4J2o5H4Bl5ErwsAYmGyi6-c2QfQr4yOmaU8j3wHY455ZQxwfQHssUqzkqhlNjIdylEqXTFNsl2SpfZa00nn8im4GYiK2O2yJ8fF5Dw4e7-ZPC274IvZg5tH4OFHtwy9anowy3EJhUzfwHeYlMcLZsY_mKm_4IbnkI_EdbpzhdTdwWu81icYdPBZ_KxBZfwy_M5Ir8PZr_2j8rT88Pj_elpaSWjuoS5kmBlYyb5W6yiGkyrrGiZoCg4nUtlZWtk1TAjtLAw0TwjqTTyRgoNYkS-rXuvY7gZMPX1oksWnQOPYUg1l7KSXLKKZbr7hl6GIfr8uqwUU1wYSrMar5WNIaWIbX0duwXEZc1ovdq-Xm1fv2yfAzvPtcN8gc0L_z92BmYNbjuHy3fq6un349lr-SMzBJA9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471723900</pqid></control><display><type>article</type><title>Phase‐Junction Electrocatalysts towards Enhanced Hydrogen Evolution Reaction in Alkaline Media</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fu, Qiang ; Wang, Xianjie ; Han, Jiecai ; Zhong, Jun ; Zhang, Tongrui ; Yao, Tai ; Xu, Chengyan ; Gao, Tangling ; Xi, Shibo ; Liang, Ce ; Xu, Lingling ; Xu, Ping ; Song, Bo</creator><creatorcontrib>Fu, Qiang ; Wang, Xianjie ; Han, Jiecai ; Zhong, Jun ; Zhang, Tongrui ; Yao, Tai ; Xu, Chengyan ; Gao, Tangling ; Xi, Shibo ; Liang, Ce ; Xu, Lingling ; Xu, Ping ; Song, Bo</creatorcontrib><description>To ensure sustainable hydrogen production by water electrolysis, robust, earth‐abundant, and high‐efficient electrocatalysts are required. Constructing a hybrid system could lead to further improvement in electrocatalytic activity. Interface engineering in composite catalysts is thus critical to determine the performance, and the phase‐junction interface should improve the catalytic activity. Here, we show that nickel diphosphide phase junction (c‐NiP2/m‐NiP2) is an effective electrocatalyst for hydrogen production in alkaline media. The overpotential (at 10 mA cm−2) for NiP2‐650 (c/m) in alkaline media could be significantly reduced by 26 % and 96 % compared with c‐NiP2 and m‐NiP2, respectively. The enhancement of catalytic activity should be attributed to the strong water dissociation ability and the rearrangement of electrons around the phase junction, which markedly improved the Volmer step and benefited the reduction process of adsorbed protons.
Constructing phase‐junction electrocatalysts could effectively accelerate the Volmer step and modulate the electronic structure at the interface. NiP2‐650(c/m) shows an overpotential η10 of 134 mV vs. RHE at 10 mA cm−2 and a Tafel slope of 67 mV dec−1, which is significantly reduced by 26 % and 96 % compared with c‐NiP2 and m‐NiP2, respectively.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202011318</identifier><identifier>PMID: 32964599</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>alkaline electrolytes ; Catalysts ; Catalytic activity ; electrocatalysis ; Electrocatalysts ; Electrolysis ; Hybrid systems ; Hydrogen ; hydrogen evolution reaction ; Hydrogen evolution reactions ; Hydrogen production ; Nickel ; phase junctions ; Protons</subject><ispartof>Angewandte Chemie International Edition, 2021-01, Vol.60 (1), p.259-267</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4108-ab74ac4d961001508a9f7c3f130e320b47c4f945d19383ca682508478e2d438a3</citedby><cites>FETCH-LOGICAL-c4108-ab74ac4d961001508a9f7c3f130e320b47c4f945d19383ca682508478e2d438a3</cites><orcidid>0000-0003-2000-5071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202011318$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202011318$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32964599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Qiang</creatorcontrib><creatorcontrib>Wang, Xianjie</creatorcontrib><creatorcontrib>Han, Jiecai</creatorcontrib><creatorcontrib>Zhong, Jun</creatorcontrib><creatorcontrib>Zhang, Tongrui</creatorcontrib><creatorcontrib>Yao, Tai</creatorcontrib><creatorcontrib>Xu, Chengyan</creatorcontrib><creatorcontrib>Gao, Tangling</creatorcontrib><creatorcontrib>Xi, Shibo</creatorcontrib><creatorcontrib>Liang, Ce</creatorcontrib><creatorcontrib>Xu, Lingling</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Song, Bo</creatorcontrib><title>Phase‐Junction Electrocatalysts towards Enhanced Hydrogen Evolution Reaction in Alkaline Media</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>To ensure sustainable hydrogen production by water electrolysis, robust, earth‐abundant, and high‐efficient electrocatalysts are required. Constructing a hybrid system could lead to further improvement in electrocatalytic activity. Interface engineering in composite catalysts is thus critical to determine the performance, and the phase‐junction interface should improve the catalytic activity. Here, we show that nickel diphosphide phase junction (c‐NiP2/m‐NiP2) is an effective electrocatalyst for hydrogen production in alkaline media. The overpotential (at 10 mA cm−2) for NiP2‐650 (c/m) in alkaline media could be significantly reduced by 26 % and 96 % compared with c‐NiP2 and m‐NiP2, respectively. The enhancement of catalytic activity should be attributed to the strong water dissociation ability and the rearrangement of electrons around the phase junction, which markedly improved the Volmer step and benefited the reduction process of adsorbed protons.
Constructing phase‐junction electrocatalysts could effectively accelerate the Volmer step and modulate the electronic structure at the interface. NiP2‐650(c/m) shows an overpotential η10 of 134 mV vs. RHE at 10 mA cm−2 and a Tafel slope of 67 mV dec−1, which is significantly reduced by 26 % and 96 % compared with c‐NiP2 and m‐NiP2, respectively.</description><subject>alkaline electrolytes</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Hybrid systems</subject><subject>Hydrogen</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Nickel</subject><subject>phase junctions</subject><subject>Protons</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0L1OHDEUBWArIgqwSZsSjUSTZhb_zdouV2j5E4QoSurJXc-dMOC1wZ4J2o5H4Bl5ErwsAYmGyi6-c2QfQr4yOmaU8j3wHY455ZQxwfQHssUqzkqhlNjIdylEqXTFNsl2SpfZa00nn8im4GYiK2O2yJ8fF5Dw4e7-ZPC274IvZg5tH4OFHtwy9anowy3EJhUzfwHeYlMcLZsY_mKm_4IbnkI_EdbpzhdTdwWu81icYdPBZ_KxBZfwy_M5Ir8PZr_2j8rT88Pj_elpaSWjuoS5kmBlYyb5W6yiGkyrrGiZoCg4nUtlZWtk1TAjtLAw0TwjqTTyRgoNYkS-rXuvY7gZMPX1oksWnQOPYUg1l7KSXLKKZbr7hl6GIfr8uqwUU1wYSrMar5WNIaWIbX0duwXEZc1ovdq-Xm1fv2yfAzvPtcN8gc0L_z92BmYNbjuHy3fq6un349lr-SMzBJA9</recordid><startdate>20210104</startdate><enddate>20210104</enddate><creator>Fu, Qiang</creator><creator>Wang, Xianjie</creator><creator>Han, Jiecai</creator><creator>Zhong, Jun</creator><creator>Zhang, Tongrui</creator><creator>Yao, Tai</creator><creator>Xu, Chengyan</creator><creator>Gao, Tangling</creator><creator>Xi, Shibo</creator><creator>Liang, Ce</creator><creator>Xu, Lingling</creator><creator>Xu, Ping</creator><creator>Song, Bo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2000-5071</orcidid></search><sort><creationdate>20210104</creationdate><title>Phase‐Junction Electrocatalysts towards Enhanced Hydrogen Evolution Reaction in Alkaline Media</title><author>Fu, Qiang ; Wang, Xianjie ; Han, Jiecai ; Zhong, Jun ; Zhang, Tongrui ; Yao, Tai ; Xu, Chengyan ; Gao, Tangling ; Xi, Shibo ; Liang, Ce ; Xu, Lingling ; Xu, Ping ; Song, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4108-ab74ac4d961001508a9f7c3f130e320b47c4f945d19383ca682508478e2d438a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>alkaline electrolytes</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Hybrid systems</topic><topic>Hydrogen</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Nickel</topic><topic>phase junctions</topic><topic>Protons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Qiang</creatorcontrib><creatorcontrib>Wang, Xianjie</creatorcontrib><creatorcontrib>Han, Jiecai</creatorcontrib><creatorcontrib>Zhong, Jun</creatorcontrib><creatorcontrib>Zhang, Tongrui</creatorcontrib><creatorcontrib>Yao, Tai</creatorcontrib><creatorcontrib>Xu, Chengyan</creatorcontrib><creatorcontrib>Gao, Tangling</creatorcontrib><creatorcontrib>Xi, Shibo</creatorcontrib><creatorcontrib>Liang, Ce</creatorcontrib><creatorcontrib>Xu, Lingling</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Song, Bo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Qiang</au><au>Wang, Xianjie</au><au>Han, Jiecai</au><au>Zhong, Jun</au><au>Zhang, Tongrui</au><au>Yao, Tai</au><au>Xu, Chengyan</au><au>Gao, Tangling</au><au>Xi, Shibo</au><au>Liang, Ce</au><au>Xu, Lingling</au><au>Xu, Ping</au><au>Song, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase‐Junction Electrocatalysts towards Enhanced Hydrogen Evolution Reaction in Alkaline Media</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-01-04</date><risdate>2021</risdate><volume>60</volume><issue>1</issue><spage>259</spage><epage>267</epage><pages>259-267</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>To ensure sustainable hydrogen production by water electrolysis, robust, earth‐abundant, and high‐efficient electrocatalysts are required. Constructing a hybrid system could lead to further improvement in electrocatalytic activity. Interface engineering in composite catalysts is thus critical to determine the performance, and the phase‐junction interface should improve the catalytic activity. Here, we show that nickel diphosphide phase junction (c‐NiP2/m‐NiP2) is an effective electrocatalyst for hydrogen production in alkaline media. The overpotential (at 10 mA cm−2) for NiP2‐650 (c/m) in alkaline media could be significantly reduced by 26 % and 96 % compared with c‐NiP2 and m‐NiP2, respectively. The enhancement of catalytic activity should be attributed to the strong water dissociation ability and the rearrangement of electrons around the phase junction, which markedly improved the Volmer step and benefited the reduction process of adsorbed protons.
Constructing phase‐junction electrocatalysts could effectively accelerate the Volmer step and modulate the electronic structure at the interface. NiP2‐650(c/m) shows an overpotential η10 of 134 mV vs. RHE at 10 mA cm−2 and a Tafel slope of 67 mV dec−1, which is significantly reduced by 26 % and 96 % compared with c‐NiP2 and m‐NiP2, respectively.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32964599</pmid><doi>10.1002/anie.202011318</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-2000-5071</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2021-01, Vol.60 (1), p.259-267 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2445424151 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | alkaline electrolytes Catalysts Catalytic activity electrocatalysis Electrocatalysts Electrolysis Hybrid systems Hydrogen hydrogen evolution reaction Hydrogen evolution reactions Hydrogen production Nickel phase junctions Protons |
title | Phase‐Junction Electrocatalysts towards Enhanced Hydrogen Evolution Reaction in Alkaline Media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%E2%80%90Junction%20Electrocatalysts%20towards%20Enhanced%20Hydrogen%20Evolution%20Reaction%20in%20Alkaline%20Media&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Fu,%20Qiang&rft.date=2021-01-04&rft.volume=60&rft.issue=1&rft.spage=259&rft.epage=267&rft.pages=259-267&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202011318&rft_dat=%3Cproquest_cross%3E2445424151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471723900&rft_id=info:pmid/32964599&rfr_iscdi=true |