Application of the principal component analysis, cluster analysis, and partial least square regression on crossbreed Angus-Nellore bulls feedlot finished
Principal component analysis (PCA) and the non-hierarchical clustering analysis ( K -means) were used to characterize the most important variables from carcass and meat quality traits of crossbred cattle. Additionally, partial least square (PLS) regression analysis was applied between the carcass me...
Gespeichert in:
Veröffentlicht in: | Tropical animal health and production 2020-11, Vol.52 (6), p.3655-3664 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3664 |
---|---|
container_issue | 6 |
container_start_page | 3655 |
container_title | Tropical animal health and production |
container_volume | 52 |
creator | Lopes, Lucas S. F. Ferreira, Mateus S. Baldassini, Welder A. Curi, Rogério A. Pereira, Guilherme L. Machado Neto, Otávio R. Oliveira, Henrique N. Silva, J. Augusto II V. Munari, Danísio P. Chardulo, Luis Artur L. |
description | Principal component analysis (PCA) and the non-hierarchical clustering analysis (
K
-means) were used to characterize the most important variables from carcass and meat quality traits of crossbred cattle. Additionally, partial least square (PLS) regression analysis was applied between the carcass measurements and meat quality traits on the classes defined by the cluster analysis. Ninety-seven non-castrated F1 Angus-Nellore bulls feedlot finished were used. After slaughter, hot carcass weight, carcass yield, cold carcass weight, carcass weight losses, pH, and backfat thickness (BFT) were measured. Subsequently, samples of the longissimus thoracis were collected to analyze shear force (SF), cooking loss (CL), meat color (
L
*, chroma, and hue), intramuscular fat, protein, collagen, moisture, and ashes. Principal component 1 (PC1) was correlated with colorimetric variables, while PC2 was correlated with carcass weights. Afterwards, three clusters (
k
= 3) were formed and projected in the gradient defined by PC1 and PC2 and allowed distinguishing groups with divergent values for collagen, protein, moisture, CL, SF, and BFT. Animals from high chroma group presented meat with more attractive colors and tenderness (SF = 1.97 to 4.84 kg). Subsequently, the PLS regression on the three chroma groups revealed a good fitness and the coefficients are used to predict the chroma variable from the explanatory variables, which may have practical importance in attempts to predict meat color from carcass and meat quality traits. Thus, PCA,
K
-means, and PLS regression confirmed the relationship between meat color and tenderness. |
doi_str_mv | 10.1007/s11250-020-02402-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2444875898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471765013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-311ae1942e874cb3253a3f5ed5663d6d9240a935842cd2c8da57f3283f8a20833</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhBVggS2xYEPBv7CxHFS1IFWxgHXmcm6krj536Jos-St8WZ6b8iAULy5L9nXPtcwh5zdkHzpj5iJwLzRom1qWYaMwTsuHayMYoaZ-SDWOqa5RR5oy8QLxlrMps-5ycSdG1THbdhjxspykG7-aQE80jnW-ATiUkHyYXqc-HKSdIM3XJxXsM-J76uOAM5a8TlwY6uTKHqojgcKZ4t7gCtMC-AOLROlFfMuKuAAx0m_YLNl8hxlyx3RIj0rFexDzTMaSANzC8JM9GFxFePe7n5Mflp-8Xn5vrb1dfLrbXjZdGz43k3AHvlABrlN9JoaWTo4ZBt60c2qGrybhOaquEH4S3g9NmlMLK0TrBrJTn5N3Jdyr5bgGc-0NAX5_mEuQFe6GUskbbzlb07T_obV5KzWGlDDetZnw1FCfq-OECY18DPbhy33PWr8X1p-L6Wlx_LK43VfTm0XrZHWD4LfnVVAXkCcC1nj2UP7P_Y_sTzZqlgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471765013</pqid></control><display><type>article</type><title>Application of the principal component analysis, cluster analysis, and partial least square regression on crossbreed Angus-Nellore bulls feedlot finished</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Lopes, Lucas S. F. ; Ferreira, Mateus S. ; Baldassini, Welder A. ; Curi, Rogério A. ; Pereira, Guilherme L. ; Machado Neto, Otávio R. ; Oliveira, Henrique N. ; Silva, J. Augusto II V. ; Munari, Danísio P. ; Chardulo, Luis Artur L.</creator><creatorcontrib>Lopes, Lucas S. F. ; Ferreira, Mateus S. ; Baldassini, Welder A. ; Curi, Rogério A. ; Pereira, Guilherme L. ; Machado Neto, Otávio R. ; Oliveira, Henrique N. ; Silva, J. Augusto II V. ; Munari, Danísio P. ; Chardulo, Luis Artur L.</creatorcontrib><description>Principal component analysis (PCA) and the non-hierarchical clustering analysis (
K
-means) were used to characterize the most important variables from carcass and meat quality traits of crossbred cattle. Additionally, partial least square (PLS) regression analysis was applied between the carcass measurements and meat quality traits on the classes defined by the cluster analysis. Ninety-seven non-castrated F1 Angus-Nellore bulls feedlot finished were used. After slaughter, hot carcass weight, carcass yield, cold carcass weight, carcass weight losses, pH, and backfat thickness (BFT) were measured. Subsequently, samples of the longissimus thoracis were collected to analyze shear force (SF), cooking loss (CL), meat color (
L
*, chroma, and hue), intramuscular fat, protein, collagen, moisture, and ashes. Principal component 1 (PC1) was correlated with colorimetric variables, while PC2 was correlated with carcass weights. Afterwards, three clusters (
k
= 3) were formed and projected in the gradient defined by PC1 and PC2 and allowed distinguishing groups with divergent values for collagen, protein, moisture, CL, SF, and BFT. Animals from high chroma group presented meat with more attractive colors and tenderness (SF = 1.97 to 4.84 kg). Subsequently, the PLS regression on the three chroma groups revealed a good fitness and the coefficients are used to predict the chroma variable from the explanatory variables, which may have practical importance in attempts to predict meat color from carcass and meat quality traits. Thus, PCA,
K
-means, and PLS regression confirmed the relationship between meat color and tenderness.</description><identifier>ISSN: 0049-4747</identifier><identifier>EISSN: 1573-7438</identifier><identifier>DOI: 10.1007/s11250-020-02402-7</identifier><identifier>PMID: 32960399</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animal Husbandry ; Animals ; Ashes ; Biomedical and Life Sciences ; Body Composition ; Carcasses ; Cattle - genetics ; Cattle - physiology ; Cluster Analysis ; Clustering ; Collagen ; Color ; Colorimetry ; Cooking ; Feedlots ; Hybridization, Genetic ; Least squares ; Least-Squares Analysis ; Life Sciences ; Male ; Meat ; Meat - analysis ; Meat quality ; Moisture ; Physical growth ; Principal Component Analysis ; Principal components analysis ; Proteins ; Regression analysis ; Regular Articles ; Shear forces ; Thickness measurement ; Variables ; Veterinary Medicine/Veterinary Science ; Weight ; Zoology</subject><ispartof>Tropical animal health and production, 2020-11, Vol.52 (6), p.3655-3664</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-311ae1942e874cb3253a3f5ed5663d6d9240a935842cd2c8da57f3283f8a20833</citedby><cites>FETCH-LOGICAL-c375t-311ae1942e874cb3253a3f5ed5663d6d9240a935842cd2c8da57f3283f8a20833</cites><orcidid>0000-0003-0840-2082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11250-020-02402-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11250-020-02402-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32960399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopes, Lucas S. F.</creatorcontrib><creatorcontrib>Ferreira, Mateus S.</creatorcontrib><creatorcontrib>Baldassini, Welder A.</creatorcontrib><creatorcontrib>Curi, Rogério A.</creatorcontrib><creatorcontrib>Pereira, Guilherme L.</creatorcontrib><creatorcontrib>Machado Neto, Otávio R.</creatorcontrib><creatorcontrib>Oliveira, Henrique N.</creatorcontrib><creatorcontrib>Silva, J. Augusto II V.</creatorcontrib><creatorcontrib>Munari, Danísio P.</creatorcontrib><creatorcontrib>Chardulo, Luis Artur L.</creatorcontrib><title>Application of the principal component analysis, cluster analysis, and partial least square regression on crossbreed Angus-Nellore bulls feedlot finished</title><title>Tropical animal health and production</title><addtitle>Trop Anim Health Prod</addtitle><addtitle>Trop Anim Health Prod</addtitle><description>Principal component analysis (PCA) and the non-hierarchical clustering analysis (
K
-means) were used to characterize the most important variables from carcass and meat quality traits of crossbred cattle. Additionally, partial least square (PLS) regression analysis was applied between the carcass measurements and meat quality traits on the classes defined by the cluster analysis. Ninety-seven non-castrated F1 Angus-Nellore bulls feedlot finished were used. After slaughter, hot carcass weight, carcass yield, cold carcass weight, carcass weight losses, pH, and backfat thickness (BFT) were measured. Subsequently, samples of the longissimus thoracis were collected to analyze shear force (SF), cooking loss (CL), meat color (
L
*, chroma, and hue), intramuscular fat, protein, collagen, moisture, and ashes. Principal component 1 (PC1) was correlated with colorimetric variables, while PC2 was correlated with carcass weights. Afterwards, three clusters (
k
= 3) were formed and projected in the gradient defined by PC1 and PC2 and allowed distinguishing groups with divergent values for collagen, protein, moisture, CL, SF, and BFT. Animals from high chroma group presented meat with more attractive colors and tenderness (SF = 1.97 to 4.84 kg). Subsequently, the PLS regression on the three chroma groups revealed a good fitness and the coefficients are used to predict the chroma variable from the explanatory variables, which may have practical importance in attempts to predict meat color from carcass and meat quality traits. Thus, PCA,
K
-means, and PLS regression confirmed the relationship between meat color and tenderness.</description><subject>Animal Husbandry</subject><subject>Animals</subject><subject>Ashes</subject><subject>Biomedical and Life Sciences</subject><subject>Body Composition</subject><subject>Carcasses</subject><subject>Cattle - genetics</subject><subject>Cattle - physiology</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Collagen</subject><subject>Color</subject><subject>Colorimetry</subject><subject>Cooking</subject><subject>Feedlots</subject><subject>Hybridization, Genetic</subject><subject>Least squares</subject><subject>Least-Squares Analysis</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Meat</subject><subject>Meat - analysis</subject><subject>Meat quality</subject><subject>Moisture</subject><subject>Physical growth</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Proteins</subject><subject>Regression analysis</subject><subject>Regular Articles</subject><subject>Shear forces</subject><subject>Thickness measurement</subject><subject>Variables</subject><subject>Veterinary Medicine/Veterinary Science</subject><subject>Weight</subject><subject>Zoology</subject><issn>0049-4747</issn><issn>1573-7438</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAUhS0EokPhBVggS2xYEPBv7CxHFS1IFWxgHXmcm6krj536Jos-St8WZ6b8iAULy5L9nXPtcwh5zdkHzpj5iJwLzRom1qWYaMwTsuHayMYoaZ-SDWOqa5RR5oy8QLxlrMps-5ycSdG1THbdhjxspykG7-aQE80jnW-ATiUkHyYXqc-HKSdIM3XJxXsM-J76uOAM5a8TlwY6uTKHqojgcKZ4t7gCtMC-AOLROlFfMuKuAAx0m_YLNl8hxlyx3RIj0rFexDzTMaSANzC8JM9GFxFePe7n5Mflp-8Xn5vrb1dfLrbXjZdGz43k3AHvlABrlN9JoaWTo4ZBt60c2qGrybhOaquEH4S3g9NmlMLK0TrBrJTn5N3Jdyr5bgGc-0NAX5_mEuQFe6GUskbbzlb07T_obV5KzWGlDDetZnw1FCfq-OECY18DPbhy33PWr8X1p-L6Wlx_LK43VfTm0XrZHWD4LfnVVAXkCcC1nj2UP7P_Y_sTzZqlgQ</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Lopes, Lucas S. F.</creator><creator>Ferreira, Mateus S.</creator><creator>Baldassini, Welder A.</creator><creator>Curi, Rogério A.</creator><creator>Pereira, Guilherme L.</creator><creator>Machado Neto, Otávio R.</creator><creator>Oliveira, Henrique N.</creator><creator>Silva, J. Augusto II V.</creator><creator>Munari, Danísio P.</creator><creator>Chardulo, Luis Artur L.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0840-2082</orcidid></search><sort><creationdate>20201101</creationdate><title>Application of the principal component analysis, cluster analysis, and partial least square regression on crossbreed Angus-Nellore bulls feedlot finished</title><author>Lopes, Lucas S. F. ; Ferreira, Mateus S. ; Baldassini, Welder A. ; Curi, Rogério A. ; Pereira, Guilherme L. ; Machado Neto, Otávio R. ; Oliveira, Henrique N. ; Silva, J. Augusto II V. ; Munari, Danísio P. ; Chardulo, Luis Artur L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-311ae1942e874cb3253a3f5ed5663d6d9240a935842cd2c8da57f3283f8a20833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal Husbandry</topic><topic>Animals</topic><topic>Ashes</topic><topic>Biomedical and Life Sciences</topic><topic>Body Composition</topic><topic>Carcasses</topic><topic>Cattle - genetics</topic><topic>Cattle - physiology</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Collagen</topic><topic>Color</topic><topic>Colorimetry</topic><topic>Cooking</topic><topic>Feedlots</topic><topic>Hybridization, Genetic</topic><topic>Least squares</topic><topic>Least-Squares Analysis</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Meat</topic><topic>Meat - analysis</topic><topic>Meat quality</topic><topic>Moisture</topic><topic>Physical growth</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Proteins</topic><topic>Regression analysis</topic><topic>Regular Articles</topic><topic>Shear forces</topic><topic>Thickness measurement</topic><topic>Variables</topic><topic>Veterinary Medicine/Veterinary Science</topic><topic>Weight</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes, Lucas S. F.</creatorcontrib><creatorcontrib>Ferreira, Mateus S.</creatorcontrib><creatorcontrib>Baldassini, Welder A.</creatorcontrib><creatorcontrib>Curi, Rogério A.</creatorcontrib><creatorcontrib>Pereira, Guilherme L.</creatorcontrib><creatorcontrib>Machado Neto, Otávio R.</creatorcontrib><creatorcontrib>Oliveira, Henrique N.</creatorcontrib><creatorcontrib>Silva, J. Augusto II V.</creatorcontrib><creatorcontrib>Munari, Danísio P.</creatorcontrib><creatorcontrib>Chardulo, Luis Artur L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Tropical animal health and production</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes, Lucas S. F.</au><au>Ferreira, Mateus S.</au><au>Baldassini, Welder A.</au><au>Curi, Rogério A.</au><au>Pereira, Guilherme L.</au><au>Machado Neto, Otávio R.</au><au>Oliveira, Henrique N.</au><au>Silva, J. Augusto II V.</au><au>Munari, Danísio P.</au><au>Chardulo, Luis Artur L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the principal component analysis, cluster analysis, and partial least square regression on crossbreed Angus-Nellore bulls feedlot finished</atitle><jtitle>Tropical animal health and production</jtitle><stitle>Trop Anim Health Prod</stitle><addtitle>Trop Anim Health Prod</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>52</volume><issue>6</issue><spage>3655</spage><epage>3664</epage><pages>3655-3664</pages><issn>0049-4747</issn><eissn>1573-7438</eissn><abstract>Principal component analysis (PCA) and the non-hierarchical clustering analysis (
K
-means) were used to characterize the most important variables from carcass and meat quality traits of crossbred cattle. Additionally, partial least square (PLS) regression analysis was applied between the carcass measurements and meat quality traits on the classes defined by the cluster analysis. Ninety-seven non-castrated F1 Angus-Nellore bulls feedlot finished were used. After slaughter, hot carcass weight, carcass yield, cold carcass weight, carcass weight losses, pH, and backfat thickness (BFT) were measured. Subsequently, samples of the longissimus thoracis were collected to analyze shear force (SF), cooking loss (CL), meat color (
L
*, chroma, and hue), intramuscular fat, protein, collagen, moisture, and ashes. Principal component 1 (PC1) was correlated with colorimetric variables, while PC2 was correlated with carcass weights. Afterwards, three clusters (
k
= 3) were formed and projected in the gradient defined by PC1 and PC2 and allowed distinguishing groups with divergent values for collagen, protein, moisture, CL, SF, and BFT. Animals from high chroma group presented meat with more attractive colors and tenderness (SF = 1.97 to 4.84 kg). Subsequently, the PLS regression on the three chroma groups revealed a good fitness and the coefficients are used to predict the chroma variable from the explanatory variables, which may have practical importance in attempts to predict meat color from carcass and meat quality traits. Thus, PCA,
K
-means, and PLS regression confirmed the relationship between meat color and tenderness.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>32960399</pmid><doi>10.1007/s11250-020-02402-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0840-2082</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0049-4747 |
ispartof | Tropical animal health and production, 2020-11, Vol.52 (6), p.3655-3664 |
issn | 0049-4747 1573-7438 |
language | eng |
recordid | cdi_proquest_miscellaneous_2444875898 |
source | MEDLINE; SpringerNature Journals |
subjects | Animal Husbandry Animals Ashes Biomedical and Life Sciences Body Composition Carcasses Cattle - genetics Cattle - physiology Cluster Analysis Clustering Collagen Color Colorimetry Cooking Feedlots Hybridization, Genetic Least squares Least-Squares Analysis Life Sciences Male Meat Meat - analysis Meat quality Moisture Physical growth Principal Component Analysis Principal components analysis Proteins Regression analysis Regular Articles Shear forces Thickness measurement Variables Veterinary Medicine/Veterinary Science Weight Zoology |
title | Application of the principal component analysis, cluster analysis, and partial least square regression on crossbreed Angus-Nellore bulls feedlot finished |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A03%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20principal%20component%20analysis,%20cluster%20analysis,%20and%20partial%20least%20square%20regression%20on%20crossbreed%20Angus-Nellore%20bulls%20feedlot%20finished&rft.jtitle=Tropical%20animal%20health%20and%20production&rft.au=Lopes,%20Lucas%20S.%20F.&rft.date=2020-11-01&rft.volume=52&rft.issue=6&rft.spage=3655&rft.epage=3664&rft.pages=3655-3664&rft.issn=0049-4747&rft.eissn=1573-7438&rft_id=info:doi/10.1007/s11250-020-02402-7&rft_dat=%3Cproquest_cross%3E2471765013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471765013&rft_id=info:pmid/32960399&rfr_iscdi=true |