Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization

One of the key differentiators between biological and artificial systems is the dynamic plasticity of living tissues, enabling adaptation to different environmental conditions, tasks, or damage by reconfiguring physical structure and behavioral control policies. Lack of dynamic plasticity is a signi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-05, Vol.33 (19), p.e2002882-n/a
Hauptverfasser: Shah, Dylan, Yang, Bilige, Kriegman, Sam, Levin, Michael, Bongard, Josh, Kramer‐Bottiglio, Rebecca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page e2002882
container_title Advanced materials (Weinheim)
container_volume 33
creator Shah, Dylan
Yang, Bilige
Kriegman, Sam
Levin, Michael
Bongard, Josh
Kramer‐Bottiglio, Rebecca
description One of the key differentiators between biological and artificial systems is the dynamic plasticity of living tissues, enabling adaptation to different environmental conditions, tasks, or damage by reconfiguring physical structure and behavioral control policies. Lack of dynamic plasticity is a significant limitation for artificial systems that must robustly operate in the natural world. Recently, researchers have begun to leverage insights from regenerating and metamorphosing organisms, designing robots capable of editing their own structure to more efficiently perform tasks under changing demands and creating new algorithms to control these changing anatomies. Here, an overview of the literature related to robots that change shape to enhance and expand their functionality is presented. Related grand challenges, including shape sensing, finding, and changing, which rely on innovations in multifunctional materials, distributed actuation and sensing, and somatic control to enable next‐generation shape changing robots are also discussed. Biological tissues exhibit incredible dynamic plasticity, enabling organisms to grow and thrive in challenging environments. Inspired by such feats, engineers have begun to design robots capable of actively editing their own structure and behaviors. An overview of the literature on shape changing robots is provided, and how multifunctional materials will help solve grand challenges to enable next‐generation robots is elucidated.
doi_str_mv 10.1002/adma.202002882
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2444606729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444606729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4392-58a7b1d9493c2034f10c3e9199bf5794e39a2e5d0ffec395d951250943561f673</originalsourceid><addsrcrecordid>eNqFkE1PwkAQhjdGI4hePZomXjxY3M-24w3xM2I0oOfNtt3CkrZbuzQGf71FEBMvnmaSeebJzIvQMcF9gjG9UGmh-hTTto8iuoO6RFDicwxiF3UxMOFDwKMOOnBujjGGAAf7qMMoCC4i2kWPk5mqtDecqXJqyqk3trFduEvvylhTusrUamFsee5NTNHkm16VqfcyWzqTqNwba5Wbz-_JIdrLVO700ab20Nvtzevw3h893z0MByM_4QyoLyIVxiQFDiyhmPGM4IRpIABxJkLgmoGiWqQ4y3TCQKQgCBUYOBMByYKQ9dDZ2lvV9r3RbiEL4xKd56rUtnGScs7bP0MKLXr6B53bpi7b6yQVlIecsoC1VH9NJbV1rtaZrGpTqHopCZarmOUqZrmNuV042WibuNDpFv_JtQVgDXyYXC__0cnB9dPgV_4FB6yG_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524742363</pqid></control><display><type>article</type><title>Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shah, Dylan ; Yang, Bilige ; Kriegman, Sam ; Levin, Michael ; Bongard, Josh ; Kramer‐Bottiglio, Rebecca</creator><creatorcontrib>Shah, Dylan ; Yang, Bilige ; Kriegman, Sam ; Levin, Michael ; Bongard, Josh ; Kramer‐Bottiglio, Rebecca</creatorcontrib><description>One of the key differentiators between biological and artificial systems is the dynamic plasticity of living tissues, enabling adaptation to different environmental conditions, tasks, or damage by reconfiguring physical structure and behavioral control policies. Lack of dynamic plasticity is a significant limitation for artificial systems that must robustly operate in the natural world. Recently, researchers have begun to leverage insights from regenerating and metamorphosing organisms, designing robots capable of editing their own structure to more efficiently perform tasks under changing demands and creating new algorithms to control these changing anatomies. Here, an overview of the literature related to robots that change shape to enhance and expand their functionality is presented. Related grand challenges, including shape sensing, finding, and changing, which rely on innovations in multifunctional materials, distributed actuation and sensing, and somatic control to enable next‐generation shape changing robots are also discussed. Biological tissues exhibit incredible dynamic plasticity, enabling organisms to grow and thrive in challenging environments. Inspired by such feats, engineers have begun to design robots capable of actively editing their own structure and behaviors. An overview of the literature on shape changing robots is provided, and how multifunctional materials will help solve grand challenges to enable next‐generation robots is elucidated.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202002882</identifier><identifier>PMID: 32954582</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Actuation ; Algorithms ; anatomical homeostasis ; Animals ; Biomimetic Materials - chemistry ; Biomimetics - methods ; Computer Simulation ; evolutionary robotics ; Materials science ; morphing robots ; Multifunctional materials ; Plastic properties ; reconfigurable robots ; regeneration ; Robotics ; Robots ; smart materials ; soft robotics ; Structural damage ; synthetic morphogenesis ; Tissues</subject><ispartof>Advanced materials (Weinheim), 2021-05, Vol.33 (19), p.e2002882-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4392-58a7b1d9493c2034f10c3e9199bf5794e39a2e5d0ffec395d951250943561f673</citedby><cites>FETCH-LOGICAL-c4392-58a7b1d9493c2034f10c3e9199bf5794e39a2e5d0ffec395d951250943561f673</cites><orcidid>0000-0003-2324-8124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202002882$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202002882$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32954582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shah, Dylan</creatorcontrib><creatorcontrib>Yang, Bilige</creatorcontrib><creatorcontrib>Kriegman, Sam</creatorcontrib><creatorcontrib>Levin, Michael</creatorcontrib><creatorcontrib>Bongard, Josh</creatorcontrib><creatorcontrib>Kramer‐Bottiglio, Rebecca</creatorcontrib><title>Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>One of the key differentiators between biological and artificial systems is the dynamic plasticity of living tissues, enabling adaptation to different environmental conditions, tasks, or damage by reconfiguring physical structure and behavioral control policies. Lack of dynamic plasticity is a significant limitation for artificial systems that must robustly operate in the natural world. Recently, researchers have begun to leverage insights from regenerating and metamorphosing organisms, designing robots capable of editing their own structure to more efficiently perform tasks under changing demands and creating new algorithms to control these changing anatomies. Here, an overview of the literature related to robots that change shape to enhance and expand their functionality is presented. Related grand challenges, including shape sensing, finding, and changing, which rely on innovations in multifunctional materials, distributed actuation and sensing, and somatic control to enable next‐generation shape changing robots are also discussed. Biological tissues exhibit incredible dynamic plasticity, enabling organisms to grow and thrive in challenging environments. Inspired by such feats, engineers have begun to design robots capable of actively editing their own structure and behaviors. An overview of the literature on shape changing robots is provided, and how multifunctional materials will help solve grand challenges to enable next‐generation robots is elucidated.</description><subject>Actuation</subject><subject>Algorithms</subject><subject>anatomical homeostasis</subject><subject>Animals</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetics - methods</subject><subject>Computer Simulation</subject><subject>evolutionary robotics</subject><subject>Materials science</subject><subject>morphing robots</subject><subject>Multifunctional materials</subject><subject>Plastic properties</subject><subject>reconfigurable robots</subject><subject>regeneration</subject><subject>Robotics</subject><subject>Robots</subject><subject>smart materials</subject><subject>soft robotics</subject><subject>Structural damage</subject><subject>synthetic morphogenesis</subject><subject>Tissues</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1PwkAQhjdGI4hePZomXjxY3M-24w3xM2I0oOfNtt3CkrZbuzQGf71FEBMvnmaSeebJzIvQMcF9gjG9UGmh-hTTto8iuoO6RFDicwxiF3UxMOFDwKMOOnBujjGGAAf7qMMoCC4i2kWPk5mqtDecqXJqyqk3trFduEvvylhTusrUamFsee5NTNHkm16VqfcyWzqTqNwba5Wbz-_JIdrLVO700ab20Nvtzevw3h893z0MByM_4QyoLyIVxiQFDiyhmPGM4IRpIABxJkLgmoGiWqQ4y3TCQKQgCBUYOBMByYKQ9dDZ2lvV9r3RbiEL4xKd56rUtnGScs7bP0MKLXr6B53bpi7b6yQVlIecsoC1VH9NJbV1rtaZrGpTqHopCZarmOUqZrmNuV042WibuNDpFv_JtQVgDXyYXC__0cnB9dPgV_4FB6yG_g</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Shah, Dylan</creator><creator>Yang, Bilige</creator><creator>Kriegman, Sam</creator><creator>Levin, Michael</creator><creator>Bongard, Josh</creator><creator>Kramer‐Bottiglio, Rebecca</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2324-8124</orcidid></search><sort><creationdate>20210501</creationdate><title>Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization</title><author>Shah, Dylan ; Yang, Bilige ; Kriegman, Sam ; Levin, Michael ; Bongard, Josh ; Kramer‐Bottiglio, Rebecca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4392-58a7b1d9493c2034f10c3e9199bf5794e39a2e5d0ffec395d951250943561f673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuation</topic><topic>Algorithms</topic><topic>anatomical homeostasis</topic><topic>Animals</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetics - methods</topic><topic>Computer Simulation</topic><topic>evolutionary robotics</topic><topic>Materials science</topic><topic>morphing robots</topic><topic>Multifunctional materials</topic><topic>Plastic properties</topic><topic>reconfigurable robots</topic><topic>regeneration</topic><topic>Robotics</topic><topic>Robots</topic><topic>smart materials</topic><topic>soft robotics</topic><topic>Structural damage</topic><topic>synthetic morphogenesis</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Dylan</creatorcontrib><creatorcontrib>Yang, Bilige</creatorcontrib><creatorcontrib>Kriegman, Sam</creatorcontrib><creatorcontrib>Levin, Michael</creatorcontrib><creatorcontrib>Bongard, Josh</creatorcontrib><creatorcontrib>Kramer‐Bottiglio, Rebecca</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Dylan</au><au>Yang, Bilige</au><au>Kriegman, Sam</au><au>Levin, Michael</au><au>Bongard, Josh</au><au>Kramer‐Bottiglio, Rebecca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>33</volume><issue>19</issue><spage>e2002882</spage><epage>n/a</epage><pages>e2002882-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>One of the key differentiators between biological and artificial systems is the dynamic plasticity of living tissues, enabling adaptation to different environmental conditions, tasks, or damage by reconfiguring physical structure and behavioral control policies. Lack of dynamic plasticity is a significant limitation for artificial systems that must robustly operate in the natural world. Recently, researchers have begun to leverage insights from regenerating and metamorphosing organisms, designing robots capable of editing their own structure to more efficiently perform tasks under changing demands and creating new algorithms to control these changing anatomies. Here, an overview of the literature related to robots that change shape to enhance and expand their functionality is presented. Related grand challenges, including shape sensing, finding, and changing, which rely on innovations in multifunctional materials, distributed actuation and sensing, and somatic control to enable next‐generation shape changing robots are also discussed. Biological tissues exhibit incredible dynamic plasticity, enabling organisms to grow and thrive in challenging environments. Inspired by such feats, engineers have begun to design robots capable of actively editing their own structure and behaviors. An overview of the literature on shape changing robots is provided, and how multifunctional materials will help solve grand challenges to enable next‐generation robots is elucidated.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32954582</pmid><doi>10.1002/adma.202002882</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2324-8124</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-05, Vol.33 (19), p.e2002882-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2444606729
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Actuation
Algorithms
anatomical homeostasis
Animals
Biomimetic Materials - chemistry
Biomimetics - methods
Computer Simulation
evolutionary robotics
Materials science
morphing robots
Multifunctional materials
Plastic properties
reconfigurable robots
regeneration
Robotics
Robots
smart materials
soft robotics
Structural damage
synthetic morphogenesis
Tissues
title Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20Changing%20Robots:%20Bioinspiration,%20Simulation,%20and%20Physical%20Realization&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Shah,%20Dylan&rft.date=2021-05-01&rft.volume=33&rft.issue=19&rft.spage=e2002882&rft.epage=n/a&rft.pages=e2002882-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202002882&rft_dat=%3Cproquest_cross%3E2444606729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524742363&rft_id=info:pmid/32954582&rfr_iscdi=true