Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization
One of the key differentiators between biological and artificial systems is the dynamic plasticity of living tissues, enabling adaptation to different environmental conditions, tasks, or damage by reconfiguring physical structure and behavioral control policies. Lack of dynamic plasticity is a signi...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-05, Vol.33 (19), p.e2002882-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | e2002882 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Shah, Dylan Yang, Bilige Kriegman, Sam Levin, Michael Bongard, Josh Kramer‐Bottiglio, Rebecca |
description | One of the key differentiators between biological and artificial systems is the dynamic plasticity of living tissues, enabling adaptation to different environmental conditions, tasks, or damage by reconfiguring physical structure and behavioral control policies. Lack of dynamic plasticity is a significant limitation for artificial systems that must robustly operate in the natural world. Recently, researchers have begun to leverage insights from regenerating and metamorphosing organisms, designing robots capable of editing their own structure to more efficiently perform tasks under changing demands and creating new algorithms to control these changing anatomies. Here, an overview of the literature related to robots that change shape to enhance and expand their functionality is presented. Related grand challenges, including shape sensing, finding, and changing, which rely on innovations in multifunctional materials, distributed actuation and sensing, and somatic control to enable next‐generation shape changing robots are also discussed.
Biological tissues exhibit incredible dynamic plasticity, enabling organisms to grow and thrive in challenging environments. Inspired by such feats, engineers have begun to design robots capable of actively editing their own structure and behaviors. An overview of the literature on shape changing robots is provided, and how multifunctional materials will help solve grand challenges to enable next‐generation robots is elucidated. |
doi_str_mv | 10.1002/adma.202002882 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2444606729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444606729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4392-58a7b1d9493c2034f10c3e9199bf5794e39a2e5d0ffec395d951250943561f673</originalsourceid><addsrcrecordid>eNqFkE1PwkAQhjdGI4hePZomXjxY3M-24w3xM2I0oOfNtt3CkrZbuzQGf71FEBMvnmaSeebJzIvQMcF9gjG9UGmh-hTTto8iuoO6RFDicwxiF3UxMOFDwKMOOnBujjGGAAf7qMMoCC4i2kWPk5mqtDecqXJqyqk3trFduEvvylhTusrUamFsee5NTNHkm16VqfcyWzqTqNwba5Wbz-_JIdrLVO700ab20Nvtzevw3h893z0MByM_4QyoLyIVxiQFDiyhmPGM4IRpIABxJkLgmoGiWqQ4y3TCQKQgCBUYOBMByYKQ9dDZ2lvV9r3RbiEL4xKd56rUtnGScs7bP0MKLXr6B53bpi7b6yQVlIecsoC1VH9NJbV1rtaZrGpTqHopCZarmOUqZrmNuV042WibuNDpFv_JtQVgDXyYXC__0cnB9dPgV_4FB6yG_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524742363</pqid></control><display><type>article</type><title>Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shah, Dylan ; Yang, Bilige ; Kriegman, Sam ; Levin, Michael ; Bongard, Josh ; Kramer‐Bottiglio, Rebecca</creator><creatorcontrib>Shah, Dylan ; Yang, Bilige ; Kriegman, Sam ; Levin, Michael ; Bongard, Josh ; Kramer‐Bottiglio, Rebecca</creatorcontrib><description>One of the key differentiators between biological and artificial systems is the dynamic plasticity of living tissues, enabling adaptation to different environmental conditions, tasks, or damage by reconfiguring physical structure and behavioral control policies. Lack of dynamic plasticity is a significant limitation for artificial systems that must robustly operate in the natural world. Recently, researchers have begun to leverage insights from regenerating and metamorphosing organisms, designing robots capable of editing their own structure to more efficiently perform tasks under changing demands and creating new algorithms to control these changing anatomies. Here, an overview of the literature related to robots that change shape to enhance and expand their functionality is presented. Related grand challenges, including shape sensing, finding, and changing, which rely on innovations in multifunctional materials, distributed actuation and sensing, and somatic control to enable next‐generation shape changing robots are also discussed.
Biological tissues exhibit incredible dynamic plasticity, enabling organisms to grow and thrive in challenging environments. Inspired by such feats, engineers have begun to design robots capable of actively editing their own structure and behaviors. An overview of the literature on shape changing robots is provided, and how multifunctional materials will help solve grand challenges to enable next‐generation robots is elucidated.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202002882</identifier><identifier>PMID: 32954582</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Actuation ; Algorithms ; anatomical homeostasis ; Animals ; Biomimetic Materials - chemistry ; Biomimetics - methods ; Computer Simulation ; evolutionary robotics ; Materials science ; morphing robots ; Multifunctional materials ; Plastic properties ; reconfigurable robots ; regeneration ; Robotics ; Robots ; smart materials ; soft robotics ; Structural damage ; synthetic morphogenesis ; Tissues</subject><ispartof>Advanced materials (Weinheim), 2021-05, Vol.33 (19), p.e2002882-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4392-58a7b1d9493c2034f10c3e9199bf5794e39a2e5d0ffec395d951250943561f673</citedby><cites>FETCH-LOGICAL-c4392-58a7b1d9493c2034f10c3e9199bf5794e39a2e5d0ffec395d951250943561f673</cites><orcidid>0000-0003-2324-8124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202002882$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202002882$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32954582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shah, Dylan</creatorcontrib><creatorcontrib>Yang, Bilige</creatorcontrib><creatorcontrib>Kriegman, Sam</creatorcontrib><creatorcontrib>Levin, Michael</creatorcontrib><creatorcontrib>Bongard, Josh</creatorcontrib><creatorcontrib>Kramer‐Bottiglio, Rebecca</creatorcontrib><title>Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>One of the key differentiators between biological and artificial systems is the dynamic plasticity of living tissues, enabling adaptation to different environmental conditions, tasks, or damage by reconfiguring physical structure and behavioral control policies. Lack of dynamic plasticity is a significant limitation for artificial systems that must robustly operate in the natural world. Recently, researchers have begun to leverage insights from regenerating and metamorphosing organisms, designing robots capable of editing their own structure to more efficiently perform tasks under changing demands and creating new algorithms to control these changing anatomies. Here, an overview of the literature related to robots that change shape to enhance and expand their functionality is presented. Related grand challenges, including shape sensing, finding, and changing, which rely on innovations in multifunctional materials, distributed actuation and sensing, and somatic control to enable next‐generation shape changing robots are also discussed.
Biological tissues exhibit incredible dynamic plasticity, enabling organisms to grow and thrive in challenging environments. Inspired by such feats, engineers have begun to design robots capable of actively editing their own structure and behaviors. An overview of the literature on shape changing robots is provided, and how multifunctional materials will help solve grand challenges to enable next‐generation robots is elucidated.</description><subject>Actuation</subject><subject>Algorithms</subject><subject>anatomical homeostasis</subject><subject>Animals</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetics - methods</subject><subject>Computer Simulation</subject><subject>evolutionary robotics</subject><subject>Materials science</subject><subject>morphing robots</subject><subject>Multifunctional materials</subject><subject>Plastic properties</subject><subject>reconfigurable robots</subject><subject>regeneration</subject><subject>Robotics</subject><subject>Robots</subject><subject>smart materials</subject><subject>soft robotics</subject><subject>Structural damage</subject><subject>synthetic morphogenesis</subject><subject>Tissues</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1PwkAQhjdGI4hePZomXjxY3M-24w3xM2I0oOfNtt3CkrZbuzQGf71FEBMvnmaSeebJzIvQMcF9gjG9UGmh-hTTto8iuoO6RFDicwxiF3UxMOFDwKMOOnBujjGGAAf7qMMoCC4i2kWPk5mqtDecqXJqyqk3trFduEvvylhTusrUamFsee5NTNHkm16VqfcyWzqTqNwba5Wbz-_JIdrLVO700ab20Nvtzevw3h893z0MByM_4QyoLyIVxiQFDiyhmPGM4IRpIABxJkLgmoGiWqQ4y3TCQKQgCBUYOBMByYKQ9dDZ2lvV9r3RbiEL4xKd56rUtnGScs7bP0MKLXr6B53bpi7b6yQVlIecsoC1VH9NJbV1rtaZrGpTqHopCZarmOUqZrmNuV042WibuNDpFv_JtQVgDXyYXC__0cnB9dPgV_4FB6yG_g</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Shah, Dylan</creator><creator>Yang, Bilige</creator><creator>Kriegman, Sam</creator><creator>Levin, Michael</creator><creator>Bongard, Josh</creator><creator>Kramer‐Bottiglio, Rebecca</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2324-8124</orcidid></search><sort><creationdate>20210501</creationdate><title>Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization</title><author>Shah, Dylan ; Yang, Bilige ; Kriegman, Sam ; Levin, Michael ; Bongard, Josh ; Kramer‐Bottiglio, Rebecca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4392-58a7b1d9493c2034f10c3e9199bf5794e39a2e5d0ffec395d951250943561f673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuation</topic><topic>Algorithms</topic><topic>anatomical homeostasis</topic><topic>Animals</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetics - methods</topic><topic>Computer Simulation</topic><topic>evolutionary robotics</topic><topic>Materials science</topic><topic>morphing robots</topic><topic>Multifunctional materials</topic><topic>Plastic properties</topic><topic>reconfigurable robots</topic><topic>regeneration</topic><topic>Robotics</topic><topic>Robots</topic><topic>smart materials</topic><topic>soft robotics</topic><topic>Structural damage</topic><topic>synthetic morphogenesis</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Dylan</creatorcontrib><creatorcontrib>Yang, Bilige</creatorcontrib><creatorcontrib>Kriegman, Sam</creatorcontrib><creatorcontrib>Levin, Michael</creatorcontrib><creatorcontrib>Bongard, Josh</creatorcontrib><creatorcontrib>Kramer‐Bottiglio, Rebecca</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Dylan</au><au>Yang, Bilige</au><au>Kriegman, Sam</au><au>Levin, Michael</au><au>Bongard, Josh</au><au>Kramer‐Bottiglio, Rebecca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>33</volume><issue>19</issue><spage>e2002882</spage><epage>n/a</epage><pages>e2002882-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>One of the key differentiators between biological and artificial systems is the dynamic plasticity of living tissues, enabling adaptation to different environmental conditions, tasks, or damage by reconfiguring physical structure and behavioral control policies. Lack of dynamic plasticity is a significant limitation for artificial systems that must robustly operate in the natural world. Recently, researchers have begun to leverage insights from regenerating and metamorphosing organisms, designing robots capable of editing their own structure to more efficiently perform tasks under changing demands and creating new algorithms to control these changing anatomies. Here, an overview of the literature related to robots that change shape to enhance and expand their functionality is presented. Related grand challenges, including shape sensing, finding, and changing, which rely on innovations in multifunctional materials, distributed actuation and sensing, and somatic control to enable next‐generation shape changing robots are also discussed.
Biological tissues exhibit incredible dynamic plasticity, enabling organisms to grow and thrive in challenging environments. Inspired by such feats, engineers have begun to design robots capable of actively editing their own structure and behaviors. An overview of the literature on shape changing robots is provided, and how multifunctional materials will help solve grand challenges to enable next‐generation robots is elucidated.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32954582</pmid><doi>10.1002/adma.202002882</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2324-8124</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-05, Vol.33 (19), p.e2002882-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2444606729 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Actuation Algorithms anatomical homeostasis Animals Biomimetic Materials - chemistry Biomimetics - methods Computer Simulation evolutionary robotics Materials science morphing robots Multifunctional materials Plastic properties reconfigurable robots regeneration Robotics Robots smart materials soft robotics Structural damage synthetic morphogenesis Tissues |
title | Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20Changing%20Robots:%20Bioinspiration,%20Simulation,%20and%20Physical%20Realization&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Shah,%20Dylan&rft.date=2021-05-01&rft.volume=33&rft.issue=19&rft.spage=e2002882&rft.epage=n/a&rft.pages=e2002882-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202002882&rft_dat=%3Cproquest_cross%3E2444606729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524742363&rft_id=info:pmid/32954582&rfr_iscdi=true |