Vascular endothelial growth factor B promotes transendothelial fatty acid transport into skeletal muscle via histone modifications during catch-up growth
Caloric restriction (CR) followed by refeeding, a phenomenon known as catch-up growth (CUG), results in excessive lipid deposition and insulin resistance in skeletal muscle, but the underlying mechanisms remain elusive. Recent reports have suggested that vascular endothelial growth factor B (VEGF-B)...
Gespeichert in:
Veröffentlicht in: | American journal of physiology: endocrinology and metabolism 2020-12, Vol.319 (6), p.E1031-E1043 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E1043 |
---|---|
container_issue | 6 |
container_start_page | E1031 |
container_title | American journal of physiology: endocrinology and metabolism |
container_volume | 319 |
creator | Lu, Xiaodan Hu, Shengqing Liao, Yunfei Zheng, Juan Zeng, Tianshu Zhong, Xueyu Liu, Geng Gou, Luoning Chen, Lulu |
description | Caloric restriction (CR) followed by refeeding, a phenomenon known as catch-up growth (CUG), results in excessive lipid deposition and insulin resistance in skeletal muscle, but the underlying mechanisms remain elusive. Recent reports have suggested that vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation by regulating endothelial fatty acid transport. Here, we found continuous activation of VEGF-B signaling and increased lipid uptake in skeletal muscle from CR to refeeding, as well as increased lipid deposition and impaired insulin sensitivity after refeeding in the skeletal muscle of CUG rodents. Inhibiting VEGF-B signaling reduced fatty acid uptake in and transport across endothelial cells. Knockdown of
in the tibialis anterior (TA) muscle of CUG mice significantly attenuated muscle lipid accumulation and ameliorated muscle insulin sensitivity by decreasing lipid uptake. Furthermore, we showed that aberrant histone methylation (H3K9me1) and acetylation (H3K14ac and H3K18ac) at the
promoter might be the main cause of persistent VEGF-B upregulation in skeletal muscle during CUG. Modifying these aberrant loci using their related enzymes [PHD finger protein 2 (PHF2) or E1A binding protein p300 (p300)] could regulate VEGF-B expression in vitro. Collectively, our findings indicate that VEGF-B can promote transendothelial lipid transport and lead to lipid overaccumulation and insulin resistance in skeletal muscle during CUG, which might be mediated by histone methylation and acetylation. |
doi_str_mv | 10.1152/ajpendo.00090.2020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2444602793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470378317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-c057886f0a22e956c304aa63ab635fdbdb5b617a8a9c2e07ce39d5f081713d1d3</originalsourceid><addsrcrecordid>eNpdkU1u2zAQRokiQe06vUAXBYFsspHLH1GUlonRNAUMdJNkK4xIyqYriQpJtfBRetvSsRMEWQ2IefPNEA-hL5QsKRXsG-xGM2i3JIRUZMkIIx_QPDVYRoUQZ2hOaMUzWubVDH0KYZc4KXL2Ec04q0ReMj5H_x4hqKkDjw9RcWs6Cx3eePc3bnELKjqPb_DoXe-iCTh6GMJbsoUY9xiU1cfe6HzEdogOh9-mMzEh_RRUZ_AfC3hrQ3SDwb3TtrUKonVDwHrydtjg9FTbbBpP2y_QeQtdMJ9PdYEebr_fr-6y9a8fP1fX60xxTmOmiJBlWbQEGDOVKBQnOUDBoSm4aHWjG9EUVEIJlWKGSGV4pUVLSiop11TzBbo65qZPPk0mxLq3QZmug8G4KdQsz_OCMFnxhF6-Q3du8kO6LlGScFlyKhPFjpTyLgRv2nr0tge_rympD-Lqk7j6WVx9EJeGvp6ip6Y3-nXkxRT_D7TVmZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470378317</pqid></control><display><type>article</type><title>Vascular endothelial growth factor B promotes transendothelial fatty acid transport into skeletal muscle via histone modifications during catch-up growth</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lu, Xiaodan ; Hu, Shengqing ; Liao, Yunfei ; Zheng, Juan ; Zeng, Tianshu ; Zhong, Xueyu ; Liu, Geng ; Gou, Luoning ; Chen, Lulu</creator><creatorcontrib>Lu, Xiaodan ; Hu, Shengqing ; Liao, Yunfei ; Zheng, Juan ; Zeng, Tianshu ; Zhong, Xueyu ; Liu, Geng ; Gou, Luoning ; Chen, Lulu</creatorcontrib><description>Caloric restriction (CR) followed by refeeding, a phenomenon known as catch-up growth (CUG), results in excessive lipid deposition and insulin resistance in skeletal muscle, but the underlying mechanisms remain elusive. Recent reports have suggested that vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation by regulating endothelial fatty acid transport. Here, we found continuous activation of VEGF-B signaling and increased lipid uptake in skeletal muscle from CR to refeeding, as well as increased lipid deposition and impaired insulin sensitivity after refeeding in the skeletal muscle of CUG rodents. Inhibiting VEGF-B signaling reduced fatty acid uptake in and transport across endothelial cells. Knockdown of
in the tibialis anterior (TA) muscle of CUG mice significantly attenuated muscle lipid accumulation and ameliorated muscle insulin sensitivity by decreasing lipid uptake. Furthermore, we showed that aberrant histone methylation (H3K9me1) and acetylation (H3K14ac and H3K18ac) at the
promoter might be the main cause of persistent VEGF-B upregulation in skeletal muscle during CUG. Modifying these aberrant loci using their related enzymes [PHD finger protein 2 (PHF2) or E1A binding protein p300 (p300)] could regulate VEGF-B expression in vitro. Collectively, our findings indicate that VEGF-B can promote transendothelial lipid transport and lead to lipid overaccumulation and insulin resistance in skeletal muscle during CUG, which might be mediated by histone methylation and acetylation.</description><identifier>ISSN: 0193-1849</identifier><identifier>EISSN: 1522-1555</identifier><identifier>DOI: 10.1152/ajpendo.00090.2020</identifier><identifier>PMID: 32954823</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Accumulation ; Acetylation ; Animals ; Caloric Restriction - adverse effects ; Deposition ; Dietary restrictions ; DNA methylation ; Endothelial cells ; Endothelial Cells - metabolism ; Fatty acids ; Fatty Acids - metabolism ; Gene Knockdown Techniques ; Growth - genetics ; Growth - physiology ; Growth factors ; Histone Code - genetics ; Histones ; Histones - metabolism ; Insulin ; Insulin resistance ; Lipid Metabolism - genetics ; Lipids ; Mice ; Mice, Transgenic ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Protein Processing, Post-Translational - genetics ; Proteins ; Sensitivity ; Signaling ; Skeletal muscle ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor B - genetics ; Vascular Endothelial Growth Factor B - physiology</subject><ispartof>American journal of physiology: endocrinology and metabolism, 2020-12, Vol.319 (6), p.E1031-E1043</ispartof><rights>Copyright American Physiological Society Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-c057886f0a22e956c304aa63ab635fdbdb5b617a8a9c2e07ce39d5f081713d1d3</citedby><cites>FETCH-LOGICAL-c331t-c057886f0a22e956c304aa63ab635fdbdb5b617a8a9c2e07ce39d5f081713d1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,3028,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32954823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Xiaodan</creatorcontrib><creatorcontrib>Hu, Shengqing</creatorcontrib><creatorcontrib>Liao, Yunfei</creatorcontrib><creatorcontrib>Zheng, Juan</creatorcontrib><creatorcontrib>Zeng, Tianshu</creatorcontrib><creatorcontrib>Zhong, Xueyu</creatorcontrib><creatorcontrib>Liu, Geng</creatorcontrib><creatorcontrib>Gou, Luoning</creatorcontrib><creatorcontrib>Chen, Lulu</creatorcontrib><title>Vascular endothelial growth factor B promotes transendothelial fatty acid transport into skeletal muscle via histone modifications during catch-up growth</title><title>American journal of physiology: endocrinology and metabolism</title><addtitle>Am J Physiol Endocrinol Metab</addtitle><description>Caloric restriction (CR) followed by refeeding, a phenomenon known as catch-up growth (CUG), results in excessive lipid deposition and insulin resistance in skeletal muscle, but the underlying mechanisms remain elusive. Recent reports have suggested that vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation by regulating endothelial fatty acid transport. Here, we found continuous activation of VEGF-B signaling and increased lipid uptake in skeletal muscle from CR to refeeding, as well as increased lipid deposition and impaired insulin sensitivity after refeeding in the skeletal muscle of CUG rodents. Inhibiting VEGF-B signaling reduced fatty acid uptake in and transport across endothelial cells. Knockdown of
in the tibialis anterior (TA) muscle of CUG mice significantly attenuated muscle lipid accumulation and ameliorated muscle insulin sensitivity by decreasing lipid uptake. Furthermore, we showed that aberrant histone methylation (H3K9me1) and acetylation (H3K14ac and H3K18ac) at the
promoter might be the main cause of persistent VEGF-B upregulation in skeletal muscle during CUG. Modifying these aberrant loci using their related enzymes [PHD finger protein 2 (PHF2) or E1A binding protein p300 (p300)] could regulate VEGF-B expression in vitro. Collectively, our findings indicate that VEGF-B can promote transendothelial lipid transport and lead to lipid overaccumulation and insulin resistance in skeletal muscle during CUG, which might be mediated by histone methylation and acetylation.</description><subject>Accumulation</subject><subject>Acetylation</subject><subject>Animals</subject><subject>Caloric Restriction - adverse effects</subject><subject>Deposition</subject><subject>Dietary restrictions</subject><subject>DNA methylation</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Gene Knockdown Techniques</subject><subject>Growth - genetics</subject><subject>Growth - physiology</subject><subject>Growth factors</subject><subject>Histone Code - genetics</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Lipid Metabolism - genetics</subject><subject>Lipids</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Protein Processing, Post-Translational - genetics</subject><subject>Proteins</subject><subject>Sensitivity</subject><subject>Signaling</subject><subject>Skeletal muscle</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor B - genetics</subject><subject>Vascular Endothelial Growth Factor B - physiology</subject><issn>0193-1849</issn><issn>1522-1555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1u2zAQRokiQe06vUAXBYFsspHLH1GUlonRNAUMdJNkK4xIyqYriQpJtfBRetvSsRMEWQ2IefPNEA-hL5QsKRXsG-xGM2i3JIRUZMkIIx_QPDVYRoUQZ2hOaMUzWubVDH0KYZc4KXL2Ec04q0ReMj5H_x4hqKkDjw9RcWs6Cx3eePc3bnELKjqPb_DoXe-iCTh6GMJbsoUY9xiU1cfe6HzEdogOh9-mMzEh_RRUZ_AfC3hrQ3SDwb3TtrUKonVDwHrydtjg9FTbbBpP2y_QeQtdMJ9PdYEebr_fr-6y9a8fP1fX60xxTmOmiJBlWbQEGDOVKBQnOUDBoSm4aHWjG9EUVEIJlWKGSGV4pUVLSiop11TzBbo65qZPPk0mxLq3QZmug8G4KdQsz_OCMFnxhF6-Q3du8kO6LlGScFlyKhPFjpTyLgRv2nr0tge_rympD-Lqk7j6WVx9EJeGvp6ip6Y3-nXkxRT_D7TVmZQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Lu, Xiaodan</creator><creator>Hu, Shengqing</creator><creator>Liao, Yunfei</creator><creator>Zheng, Juan</creator><creator>Zeng, Tianshu</creator><creator>Zhong, Xueyu</creator><creator>Liu, Geng</creator><creator>Gou, Luoning</creator><creator>Chen, Lulu</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20201201</creationdate><title>Vascular endothelial growth factor B promotes transendothelial fatty acid transport into skeletal muscle via histone modifications during catch-up growth</title><author>Lu, Xiaodan ; Hu, Shengqing ; Liao, Yunfei ; Zheng, Juan ; Zeng, Tianshu ; Zhong, Xueyu ; Liu, Geng ; Gou, Luoning ; Chen, Lulu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-c057886f0a22e956c304aa63ab635fdbdb5b617a8a9c2e07ce39d5f081713d1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accumulation</topic><topic>Acetylation</topic><topic>Animals</topic><topic>Caloric Restriction - adverse effects</topic><topic>Deposition</topic><topic>Dietary restrictions</topic><topic>DNA methylation</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Gene Knockdown Techniques</topic><topic>Growth - genetics</topic><topic>Growth - physiology</topic><topic>Growth factors</topic><topic>Histone Code - genetics</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Lipid Metabolism - genetics</topic><topic>Lipids</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Protein Processing, Post-Translational - genetics</topic><topic>Proteins</topic><topic>Sensitivity</topic><topic>Signaling</topic><topic>Skeletal muscle</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor B - genetics</topic><topic>Vascular Endothelial Growth Factor B - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xiaodan</creatorcontrib><creatorcontrib>Hu, Shengqing</creatorcontrib><creatorcontrib>Liao, Yunfei</creatorcontrib><creatorcontrib>Zheng, Juan</creatorcontrib><creatorcontrib>Zeng, Tianshu</creatorcontrib><creatorcontrib>Zhong, Xueyu</creatorcontrib><creatorcontrib>Liu, Geng</creatorcontrib><creatorcontrib>Gou, Luoning</creatorcontrib><creatorcontrib>Chen, Lulu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of physiology: endocrinology and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xiaodan</au><au>Hu, Shengqing</au><au>Liao, Yunfei</au><au>Zheng, Juan</au><au>Zeng, Tianshu</au><au>Zhong, Xueyu</au><au>Liu, Geng</au><au>Gou, Luoning</au><au>Chen, Lulu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascular endothelial growth factor B promotes transendothelial fatty acid transport into skeletal muscle via histone modifications during catch-up growth</atitle><jtitle>American journal of physiology: endocrinology and metabolism</jtitle><addtitle>Am J Physiol Endocrinol Metab</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>319</volume><issue>6</issue><spage>E1031</spage><epage>E1043</epage><pages>E1031-E1043</pages><issn>0193-1849</issn><eissn>1522-1555</eissn><abstract>Caloric restriction (CR) followed by refeeding, a phenomenon known as catch-up growth (CUG), results in excessive lipid deposition and insulin resistance in skeletal muscle, but the underlying mechanisms remain elusive. Recent reports have suggested that vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation by regulating endothelial fatty acid transport. Here, we found continuous activation of VEGF-B signaling and increased lipid uptake in skeletal muscle from CR to refeeding, as well as increased lipid deposition and impaired insulin sensitivity after refeeding in the skeletal muscle of CUG rodents. Inhibiting VEGF-B signaling reduced fatty acid uptake in and transport across endothelial cells. Knockdown of
in the tibialis anterior (TA) muscle of CUG mice significantly attenuated muscle lipid accumulation and ameliorated muscle insulin sensitivity by decreasing lipid uptake. Furthermore, we showed that aberrant histone methylation (H3K9me1) and acetylation (H3K14ac and H3K18ac) at the
promoter might be the main cause of persistent VEGF-B upregulation in skeletal muscle during CUG. Modifying these aberrant loci using their related enzymes [PHD finger protein 2 (PHF2) or E1A binding protein p300 (p300)] could regulate VEGF-B expression in vitro. Collectively, our findings indicate that VEGF-B can promote transendothelial lipid transport and lead to lipid overaccumulation and insulin resistance in skeletal muscle during CUG, which might be mediated by histone methylation and acetylation.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>32954823</pmid><doi>10.1152/ajpendo.00090.2020</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0193-1849 |
ispartof | American journal of physiology: endocrinology and metabolism, 2020-12, Vol.319 (6), p.E1031-E1043 |
issn | 0193-1849 1522-1555 |
language | eng |
recordid | cdi_proquest_miscellaneous_2444602793 |
source | MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Accumulation Acetylation Animals Caloric Restriction - adverse effects Deposition Dietary restrictions DNA methylation Endothelial cells Endothelial Cells - metabolism Fatty acids Fatty Acids - metabolism Gene Knockdown Techniques Growth - genetics Growth - physiology Growth factors Histone Code - genetics Histones Histones - metabolism Insulin Insulin resistance Lipid Metabolism - genetics Lipids Mice Mice, Transgenic Muscle, Skeletal - metabolism Muscles Musculoskeletal system Protein Processing, Post-Translational - genetics Proteins Sensitivity Signaling Skeletal muscle Vascular endothelial growth factor Vascular Endothelial Growth Factor B - genetics Vascular Endothelial Growth Factor B - physiology |
title | Vascular endothelial growth factor B promotes transendothelial fatty acid transport into skeletal muscle via histone modifications during catch-up growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascular%20endothelial%20growth%20factor%20B%20promotes%20transendothelial%20fatty%20acid%20transport%20into%20skeletal%20muscle%20via%20histone%20modifications%20during%20catch-up%20growth&rft.jtitle=American%20journal%20of%20physiology:%20endocrinology%20and%20metabolism&rft.au=Lu,%20Xiaodan&rft.date=2020-12-01&rft.volume=319&rft.issue=6&rft.spage=E1031&rft.epage=E1043&rft.pages=E1031-E1043&rft.issn=0193-1849&rft.eissn=1522-1555&rft_id=info:doi/10.1152/ajpendo.00090.2020&rft_dat=%3Cproquest_cross%3E2470378317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470378317&rft_id=info:pmid/32954823&rfr_iscdi=true |