Vascular endothelial growth factor B promotes transendothelial fatty acid transport into skeletal muscle via histone modifications during catch-up growth

Caloric restriction (CR) followed by refeeding, a phenomenon known as catch-up growth (CUG), results in excessive lipid deposition and insulin resistance in skeletal muscle, but the underlying mechanisms remain elusive. Recent reports have suggested that vascular endothelial growth factor B (VEGF-B)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: endocrinology and metabolism 2020-12, Vol.319 (6), p.E1031-E1043
Hauptverfasser: Lu, Xiaodan, Hu, Shengqing, Liao, Yunfei, Zheng, Juan, Zeng, Tianshu, Zhong, Xueyu, Liu, Geng, Gou, Luoning, Chen, Lulu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E1043
container_issue 6
container_start_page E1031
container_title American journal of physiology: endocrinology and metabolism
container_volume 319
creator Lu, Xiaodan
Hu, Shengqing
Liao, Yunfei
Zheng, Juan
Zeng, Tianshu
Zhong, Xueyu
Liu, Geng
Gou, Luoning
Chen, Lulu
description Caloric restriction (CR) followed by refeeding, a phenomenon known as catch-up growth (CUG), results in excessive lipid deposition and insulin resistance in skeletal muscle, but the underlying mechanisms remain elusive. Recent reports have suggested that vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation by regulating endothelial fatty acid transport. Here, we found continuous activation of VEGF-B signaling and increased lipid uptake in skeletal muscle from CR to refeeding, as well as increased lipid deposition and impaired insulin sensitivity after refeeding in the skeletal muscle of CUG rodents. Inhibiting VEGF-B signaling reduced fatty acid uptake in and transport across endothelial cells. Knockdown of in the tibialis anterior (TA) muscle of CUG mice significantly attenuated muscle lipid accumulation and ameliorated muscle insulin sensitivity by decreasing lipid uptake. Furthermore, we showed that aberrant histone methylation (H3K9me1) and acetylation (H3K14ac and H3K18ac) at the promoter might be the main cause of persistent VEGF-B upregulation in skeletal muscle during CUG. Modifying these aberrant loci using their related enzymes [PHD finger protein 2 (PHF2) or E1A binding protein p300 (p300)] could regulate VEGF-B expression in vitro. Collectively, our findings indicate that VEGF-B can promote transendothelial lipid transport and lead to lipid overaccumulation and insulin resistance in skeletal muscle during CUG, which might be mediated by histone methylation and acetylation.
doi_str_mv 10.1152/ajpendo.00090.2020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2444602793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470378317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-c057886f0a22e956c304aa63ab635fdbdb5b617a8a9c2e07ce39d5f081713d1d3</originalsourceid><addsrcrecordid>eNpdkU1u2zAQRokiQe06vUAXBYFsspHLH1GUlonRNAUMdJNkK4xIyqYriQpJtfBRetvSsRMEWQ2IefPNEA-hL5QsKRXsG-xGM2i3JIRUZMkIIx_QPDVYRoUQZ2hOaMUzWubVDH0KYZc4KXL2Ec04q0ReMj5H_x4hqKkDjw9RcWs6Cx3eePc3bnELKjqPb_DoXe-iCTh6GMJbsoUY9xiU1cfe6HzEdogOh9-mMzEh_RRUZ_AfC3hrQ3SDwb3TtrUKonVDwHrydtjg9FTbbBpP2y_QeQtdMJ9PdYEebr_fr-6y9a8fP1fX60xxTmOmiJBlWbQEGDOVKBQnOUDBoSm4aHWjG9EUVEIJlWKGSGV4pUVLSiop11TzBbo65qZPPk0mxLq3QZmug8G4KdQsz_OCMFnxhF6-Q3du8kO6LlGScFlyKhPFjpTyLgRv2nr0tge_rympD-Lqk7j6WVx9EJeGvp6ip6Y3-nXkxRT_D7TVmZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470378317</pqid></control><display><type>article</type><title>Vascular endothelial growth factor B promotes transendothelial fatty acid transport into skeletal muscle via histone modifications during catch-up growth</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lu, Xiaodan ; Hu, Shengqing ; Liao, Yunfei ; Zheng, Juan ; Zeng, Tianshu ; Zhong, Xueyu ; Liu, Geng ; Gou, Luoning ; Chen, Lulu</creator><creatorcontrib>Lu, Xiaodan ; Hu, Shengqing ; Liao, Yunfei ; Zheng, Juan ; Zeng, Tianshu ; Zhong, Xueyu ; Liu, Geng ; Gou, Luoning ; Chen, Lulu</creatorcontrib><description>Caloric restriction (CR) followed by refeeding, a phenomenon known as catch-up growth (CUG), results in excessive lipid deposition and insulin resistance in skeletal muscle, but the underlying mechanisms remain elusive. Recent reports have suggested that vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation by regulating endothelial fatty acid transport. Here, we found continuous activation of VEGF-B signaling and increased lipid uptake in skeletal muscle from CR to refeeding, as well as increased lipid deposition and impaired insulin sensitivity after refeeding in the skeletal muscle of CUG rodents. Inhibiting VEGF-B signaling reduced fatty acid uptake in and transport across endothelial cells. Knockdown of in the tibialis anterior (TA) muscle of CUG mice significantly attenuated muscle lipid accumulation and ameliorated muscle insulin sensitivity by decreasing lipid uptake. Furthermore, we showed that aberrant histone methylation (H3K9me1) and acetylation (H3K14ac and H3K18ac) at the promoter might be the main cause of persistent VEGF-B upregulation in skeletal muscle during CUG. Modifying these aberrant loci using their related enzymes [PHD finger protein 2 (PHF2) or E1A binding protein p300 (p300)] could regulate VEGF-B expression in vitro. Collectively, our findings indicate that VEGF-B can promote transendothelial lipid transport and lead to lipid overaccumulation and insulin resistance in skeletal muscle during CUG, which might be mediated by histone methylation and acetylation.</description><identifier>ISSN: 0193-1849</identifier><identifier>EISSN: 1522-1555</identifier><identifier>DOI: 10.1152/ajpendo.00090.2020</identifier><identifier>PMID: 32954823</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Accumulation ; Acetylation ; Animals ; Caloric Restriction - adverse effects ; Deposition ; Dietary restrictions ; DNA methylation ; Endothelial cells ; Endothelial Cells - metabolism ; Fatty acids ; Fatty Acids - metabolism ; Gene Knockdown Techniques ; Growth - genetics ; Growth - physiology ; Growth factors ; Histone Code - genetics ; Histones ; Histones - metabolism ; Insulin ; Insulin resistance ; Lipid Metabolism - genetics ; Lipids ; Mice ; Mice, Transgenic ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Protein Processing, Post-Translational - genetics ; Proteins ; Sensitivity ; Signaling ; Skeletal muscle ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor B - genetics ; Vascular Endothelial Growth Factor B - physiology</subject><ispartof>American journal of physiology: endocrinology and metabolism, 2020-12, Vol.319 (6), p.E1031-E1043</ispartof><rights>Copyright American Physiological Society Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-c057886f0a22e956c304aa63ab635fdbdb5b617a8a9c2e07ce39d5f081713d1d3</citedby><cites>FETCH-LOGICAL-c331t-c057886f0a22e956c304aa63ab635fdbdb5b617a8a9c2e07ce39d5f081713d1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,3028,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32954823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Xiaodan</creatorcontrib><creatorcontrib>Hu, Shengqing</creatorcontrib><creatorcontrib>Liao, Yunfei</creatorcontrib><creatorcontrib>Zheng, Juan</creatorcontrib><creatorcontrib>Zeng, Tianshu</creatorcontrib><creatorcontrib>Zhong, Xueyu</creatorcontrib><creatorcontrib>Liu, Geng</creatorcontrib><creatorcontrib>Gou, Luoning</creatorcontrib><creatorcontrib>Chen, Lulu</creatorcontrib><title>Vascular endothelial growth factor B promotes transendothelial fatty acid transport into skeletal muscle via histone modifications during catch-up growth</title><title>American journal of physiology: endocrinology and metabolism</title><addtitle>Am J Physiol Endocrinol Metab</addtitle><description>Caloric restriction (CR) followed by refeeding, a phenomenon known as catch-up growth (CUG), results in excessive lipid deposition and insulin resistance in skeletal muscle, but the underlying mechanisms remain elusive. Recent reports have suggested that vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation by regulating endothelial fatty acid transport. Here, we found continuous activation of VEGF-B signaling and increased lipid uptake in skeletal muscle from CR to refeeding, as well as increased lipid deposition and impaired insulin sensitivity after refeeding in the skeletal muscle of CUG rodents. Inhibiting VEGF-B signaling reduced fatty acid uptake in and transport across endothelial cells. Knockdown of in the tibialis anterior (TA) muscle of CUG mice significantly attenuated muscle lipid accumulation and ameliorated muscle insulin sensitivity by decreasing lipid uptake. Furthermore, we showed that aberrant histone methylation (H3K9me1) and acetylation (H3K14ac and H3K18ac) at the promoter might be the main cause of persistent VEGF-B upregulation in skeletal muscle during CUG. Modifying these aberrant loci using their related enzymes [PHD finger protein 2 (PHF2) or E1A binding protein p300 (p300)] could regulate VEGF-B expression in vitro. Collectively, our findings indicate that VEGF-B can promote transendothelial lipid transport and lead to lipid overaccumulation and insulin resistance in skeletal muscle during CUG, which might be mediated by histone methylation and acetylation.</description><subject>Accumulation</subject><subject>Acetylation</subject><subject>Animals</subject><subject>Caloric Restriction - adverse effects</subject><subject>Deposition</subject><subject>Dietary restrictions</subject><subject>DNA methylation</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Gene Knockdown Techniques</subject><subject>Growth - genetics</subject><subject>Growth - physiology</subject><subject>Growth factors</subject><subject>Histone Code - genetics</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Lipid Metabolism - genetics</subject><subject>Lipids</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Protein Processing, Post-Translational - genetics</subject><subject>Proteins</subject><subject>Sensitivity</subject><subject>Signaling</subject><subject>Skeletal muscle</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor B - genetics</subject><subject>Vascular Endothelial Growth Factor B - physiology</subject><issn>0193-1849</issn><issn>1522-1555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1u2zAQRokiQe06vUAXBYFsspHLH1GUlonRNAUMdJNkK4xIyqYriQpJtfBRetvSsRMEWQ2IefPNEA-hL5QsKRXsG-xGM2i3JIRUZMkIIx_QPDVYRoUQZ2hOaMUzWubVDH0KYZc4KXL2Ec04q0ReMj5H_x4hqKkDjw9RcWs6Cx3eePc3bnELKjqPb_DoXe-iCTh6GMJbsoUY9xiU1cfe6HzEdogOh9-mMzEh_RRUZ_AfC3hrQ3SDwb3TtrUKonVDwHrydtjg9FTbbBpP2y_QeQtdMJ9PdYEebr_fr-6y9a8fP1fX60xxTmOmiJBlWbQEGDOVKBQnOUDBoSm4aHWjG9EUVEIJlWKGSGV4pUVLSiop11TzBbo65qZPPk0mxLq3QZmug8G4KdQsz_OCMFnxhF6-Q3du8kO6LlGScFlyKhPFjpTyLgRv2nr0tge_rympD-Lqk7j6WVx9EJeGvp6ip6Y3-nXkxRT_D7TVmZQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Lu, Xiaodan</creator><creator>Hu, Shengqing</creator><creator>Liao, Yunfei</creator><creator>Zheng, Juan</creator><creator>Zeng, Tianshu</creator><creator>Zhong, Xueyu</creator><creator>Liu, Geng</creator><creator>Gou, Luoning</creator><creator>Chen, Lulu</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20201201</creationdate><title>Vascular endothelial growth factor B promotes transendothelial fatty acid transport into skeletal muscle via histone modifications during catch-up growth</title><author>Lu, Xiaodan ; Hu, Shengqing ; Liao, Yunfei ; Zheng, Juan ; Zeng, Tianshu ; Zhong, Xueyu ; Liu, Geng ; Gou, Luoning ; Chen, Lulu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-c057886f0a22e956c304aa63ab635fdbdb5b617a8a9c2e07ce39d5f081713d1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accumulation</topic><topic>Acetylation</topic><topic>Animals</topic><topic>Caloric Restriction - adverse effects</topic><topic>Deposition</topic><topic>Dietary restrictions</topic><topic>DNA methylation</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Gene Knockdown Techniques</topic><topic>Growth - genetics</topic><topic>Growth - physiology</topic><topic>Growth factors</topic><topic>Histone Code - genetics</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Lipid Metabolism - genetics</topic><topic>Lipids</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Protein Processing, Post-Translational - genetics</topic><topic>Proteins</topic><topic>Sensitivity</topic><topic>Signaling</topic><topic>Skeletal muscle</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor B - genetics</topic><topic>Vascular Endothelial Growth Factor B - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xiaodan</creatorcontrib><creatorcontrib>Hu, Shengqing</creatorcontrib><creatorcontrib>Liao, Yunfei</creatorcontrib><creatorcontrib>Zheng, Juan</creatorcontrib><creatorcontrib>Zeng, Tianshu</creatorcontrib><creatorcontrib>Zhong, Xueyu</creatorcontrib><creatorcontrib>Liu, Geng</creatorcontrib><creatorcontrib>Gou, Luoning</creatorcontrib><creatorcontrib>Chen, Lulu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of physiology: endocrinology and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xiaodan</au><au>Hu, Shengqing</au><au>Liao, Yunfei</au><au>Zheng, Juan</au><au>Zeng, Tianshu</au><au>Zhong, Xueyu</au><au>Liu, Geng</au><au>Gou, Luoning</au><au>Chen, Lulu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascular endothelial growth factor B promotes transendothelial fatty acid transport into skeletal muscle via histone modifications during catch-up growth</atitle><jtitle>American journal of physiology: endocrinology and metabolism</jtitle><addtitle>Am J Physiol Endocrinol Metab</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>319</volume><issue>6</issue><spage>E1031</spage><epage>E1043</epage><pages>E1031-E1043</pages><issn>0193-1849</issn><eissn>1522-1555</eissn><abstract>Caloric restriction (CR) followed by refeeding, a phenomenon known as catch-up growth (CUG), results in excessive lipid deposition and insulin resistance in skeletal muscle, but the underlying mechanisms remain elusive. Recent reports have suggested that vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation by regulating endothelial fatty acid transport. Here, we found continuous activation of VEGF-B signaling and increased lipid uptake in skeletal muscle from CR to refeeding, as well as increased lipid deposition and impaired insulin sensitivity after refeeding in the skeletal muscle of CUG rodents. Inhibiting VEGF-B signaling reduced fatty acid uptake in and transport across endothelial cells. Knockdown of in the tibialis anterior (TA) muscle of CUG mice significantly attenuated muscle lipid accumulation and ameliorated muscle insulin sensitivity by decreasing lipid uptake. Furthermore, we showed that aberrant histone methylation (H3K9me1) and acetylation (H3K14ac and H3K18ac) at the promoter might be the main cause of persistent VEGF-B upregulation in skeletal muscle during CUG. Modifying these aberrant loci using their related enzymes [PHD finger protein 2 (PHF2) or E1A binding protein p300 (p300)] could regulate VEGF-B expression in vitro. Collectively, our findings indicate that VEGF-B can promote transendothelial lipid transport and lead to lipid overaccumulation and insulin resistance in skeletal muscle during CUG, which might be mediated by histone methylation and acetylation.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>32954823</pmid><doi>10.1152/ajpendo.00090.2020</doi></addata></record>
fulltext fulltext
identifier ISSN: 0193-1849
ispartof American journal of physiology: endocrinology and metabolism, 2020-12, Vol.319 (6), p.E1031-E1043
issn 0193-1849
1522-1555
language eng
recordid cdi_proquest_miscellaneous_2444602793
source MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Accumulation
Acetylation
Animals
Caloric Restriction - adverse effects
Deposition
Dietary restrictions
DNA methylation
Endothelial cells
Endothelial Cells - metabolism
Fatty acids
Fatty Acids - metabolism
Gene Knockdown Techniques
Growth - genetics
Growth - physiology
Growth factors
Histone Code - genetics
Histones
Histones - metabolism
Insulin
Insulin resistance
Lipid Metabolism - genetics
Lipids
Mice
Mice, Transgenic
Muscle, Skeletal - metabolism
Muscles
Musculoskeletal system
Protein Processing, Post-Translational - genetics
Proteins
Sensitivity
Signaling
Skeletal muscle
Vascular endothelial growth factor
Vascular Endothelial Growth Factor B - genetics
Vascular Endothelial Growth Factor B - physiology
title Vascular endothelial growth factor B promotes transendothelial fatty acid transport into skeletal muscle via histone modifications during catch-up growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascular%20endothelial%20growth%20factor%20B%20promotes%20transendothelial%20fatty%20acid%20transport%20into%20skeletal%20muscle%20via%20histone%20modifications%20during%20catch-up%20growth&rft.jtitle=American%20journal%20of%20physiology:%20endocrinology%20and%20metabolism&rft.au=Lu,%20Xiaodan&rft.date=2020-12-01&rft.volume=319&rft.issue=6&rft.spage=E1031&rft.epage=E1043&rft.pages=E1031-E1043&rft.issn=0193-1849&rft.eissn=1522-1555&rft_id=info:doi/10.1152/ajpendo.00090.2020&rft_dat=%3Cproquest_cross%3E2470378317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470378317&rft_id=info:pmid/32954823&rfr_iscdi=true