Dual-energy CT arthrography: a feasibility study

Objective To evaluate the feasibility of producing 2-dimensional (2D) virtual noncontrast images and 3-dimensional (3D) bone models from dual-energy computed tomography (DECT) arthrograms and to determine whether this is best accomplished using 190 keV virtual monoenergetic images (VMI) or virtual u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Skeletal radiology 2021-04, Vol.50 (4), p.693-703
Hauptverfasser: Sandhu, Rashpal, Aslan, Mercan, Obuchowski, Nancy, Primak, Andrew, Karim, Wadih, Subhas, Naveen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 703
container_issue 4
container_start_page 693
container_title Skeletal radiology
container_volume 50
creator Sandhu, Rashpal
Aslan, Mercan
Obuchowski, Nancy
Primak, Andrew
Karim, Wadih
Subhas, Naveen
description Objective To evaluate the feasibility of producing 2-dimensional (2D) virtual noncontrast images and 3-dimensional (3D) bone models from dual-energy computed tomography (DECT) arthrograms and to determine whether this is best accomplished using 190 keV virtual monoenergetic images (VMI) or virtual unenhanced (VUE) images. Materials and methods VMI and VUE images were retrospectively reconstructed from patients with internal derangement of the shoulder or knee joint who underwent DECT arthrography between September 2017 and August 2019. A region of interest was placed in the area of brightest contrast, and the mean attenuation (in Hounsfield units [HUs]) was recorded. Two blinded musculoskeletal radiologists qualitatively graded the 2D images and 3D models using scores ranging from 0 to 3 (0 considered optimal). Results Twenty-six patients (mean age ± SD, 57.5 ± 16.8 years; 6 women) were included in the study. The contrast attenuation on VUE images (overall mean ± SD, 10.5 ± 16.4 HU; knee, 19.3 ± 10.7 HU; shoulder, 5.0 ± 17.2 HU) was significantly lower ( p  
doi_str_mv 10.1007/s00256-020-03603-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2444386694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A731360216</galeid><sourcerecordid>A731360216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-1ee056a9b5ffcd338f4a46a0af791efdfddffd5fa0e2a02ae1aee0facdf3cf963</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJabZp_0AOwZBLL0pHH5bt3ML2EwK9pGcxa81sHLz2RrIP_vdVumlDSihzGBg978toXiFOFVwogOpjAtClk6BBgnFgZPNKrJQ1Wmrl1JFY5amV2tj6WLxN6Q5AVVXp3ohjoxtbN2BWAj7N2EsaKG6XYn1TYJxu47iNuL9dLgssmDB1m67vpqVI0xyWd-I1Y5_o_WM_ET-_fL5Zf5PXP75-X19dy9ZaPUlFBKXDZlMyt8GYmi1ah4BcNYo4cAjMoWQE0ggaSWFWMLaBTcuNMyfiw8F3H8f7mdLkd11qqe9xoHFOXltrTe1cYzN6_g96N85xyNtlqq7BQAXlE7XFnnw38DhFbB9M_VVlVD5gvlqmLl6gcgXade04EHd5_kygD4I2jilFYr-P3Q7j4hX4h5j8ISafY_K_Y_JNFp09bjxvdhT-Sv7kkgFzAFJ-GrYUn770H9tfWzKbqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488030705</pqid></control><display><type>article</type><title>Dual-energy CT arthrography: a feasibility study</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sandhu, Rashpal ; Aslan, Mercan ; Obuchowski, Nancy ; Primak, Andrew ; Karim, Wadih ; Subhas, Naveen</creator><creatorcontrib>Sandhu, Rashpal ; Aslan, Mercan ; Obuchowski, Nancy ; Primak, Andrew ; Karim, Wadih ; Subhas, Naveen</creatorcontrib><description>Objective To evaluate the feasibility of producing 2-dimensional (2D) virtual noncontrast images and 3-dimensional (3D) bone models from dual-energy computed tomography (DECT) arthrograms and to determine whether this is best accomplished using 190 keV virtual monoenergetic images (VMI) or virtual unenhanced (VUE) images. Materials and methods VMI and VUE images were retrospectively reconstructed from patients with internal derangement of the shoulder or knee joint who underwent DECT arthrography between September 2017 and August 2019. A region of interest was placed in the area of brightest contrast, and the mean attenuation (in Hounsfield units [HUs]) was recorded. Two blinded musculoskeletal radiologists qualitatively graded the 2D images and 3D models using scores ranging from 0 to 3 (0 considered optimal). Results Twenty-six patients (mean age ± SD, 57.5 ± 16.8 years; 6 women) were included in the study. The contrast attenuation on VUE images (overall mean ± SD, 10.5 ± 16.4 HU; knee, 19.3 ± 10.7 HU; shoulder, 5.0 ± 17.2 HU) was significantly lower ( p  &lt; 0.001 for all comparisons) than on VMI (overall mean ± SD, 107.7 ± 43.8 HU; knee, 104.6 ± 31.1 HU; shoulder, 109.6 ± 51.0 HU). The proportion of cases with optimal scores (0 or 1) was significantly higher with VUE than with VMI for both 2D and 3D images ( p  &lt; 0.001). Conclusions DECT arthrography can be used to produce 2D virtual noncontrast images and to generate 3D bone models. The VUE technique is superior to VMI in producing virtual noncontrast images.</description><identifier>ISSN: 0364-2348</identifier><identifier>EISSN: 1432-2161</identifier><identifier>DOI: 10.1007/s00256-020-03603-9</identifier><identifier>PMID: 32948903</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Attenuation ; Computed tomography ; CT imaging ; Diagnostic imaging ; Feasibility studies ; Image contrast ; Image reconstruction ; Imaging ; Knee ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Nuclear Medicine ; Orthopedics ; Pathology ; Radiology ; Scientific Article ; Shoulder ; Three dimensional models ; Two dimensional models</subject><ispartof>Skeletal radiology, 2021-04, Vol.50 (4), p.693-703</ispartof><rights>ISS 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>ISS 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-1ee056a9b5ffcd338f4a46a0af791efdfddffd5fa0e2a02ae1aee0facdf3cf963</citedby><cites>FETCH-LOGICAL-c442t-1ee056a9b5ffcd338f4a46a0af791efdfddffd5fa0e2a02ae1aee0facdf3cf963</cites><orcidid>0000-0002-0502-6280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00256-020-03603-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00256-020-03603-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32948903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sandhu, Rashpal</creatorcontrib><creatorcontrib>Aslan, Mercan</creatorcontrib><creatorcontrib>Obuchowski, Nancy</creatorcontrib><creatorcontrib>Primak, Andrew</creatorcontrib><creatorcontrib>Karim, Wadih</creatorcontrib><creatorcontrib>Subhas, Naveen</creatorcontrib><title>Dual-energy CT arthrography: a feasibility study</title><title>Skeletal radiology</title><addtitle>Skeletal Radiol</addtitle><addtitle>Skeletal Radiol</addtitle><description>Objective To evaluate the feasibility of producing 2-dimensional (2D) virtual noncontrast images and 3-dimensional (3D) bone models from dual-energy computed tomography (DECT) arthrograms and to determine whether this is best accomplished using 190 keV virtual monoenergetic images (VMI) or virtual unenhanced (VUE) images. Materials and methods VMI and VUE images were retrospectively reconstructed from patients with internal derangement of the shoulder or knee joint who underwent DECT arthrography between September 2017 and August 2019. A region of interest was placed in the area of brightest contrast, and the mean attenuation (in Hounsfield units [HUs]) was recorded. Two blinded musculoskeletal radiologists qualitatively graded the 2D images and 3D models using scores ranging from 0 to 3 (0 considered optimal). Results Twenty-six patients (mean age ± SD, 57.5 ± 16.8 years; 6 women) were included in the study. The contrast attenuation on VUE images (overall mean ± SD, 10.5 ± 16.4 HU; knee, 19.3 ± 10.7 HU; shoulder, 5.0 ± 17.2 HU) was significantly lower ( p  &lt; 0.001 for all comparisons) than on VMI (overall mean ± SD, 107.7 ± 43.8 HU; knee, 104.6 ± 31.1 HU; shoulder, 109.6 ± 51.0 HU). The proportion of cases with optimal scores (0 or 1) was significantly higher with VUE than with VMI for both 2D and 3D images ( p  &lt; 0.001). Conclusions DECT arthrography can be used to produce 2D virtual noncontrast images and to generate 3D bone models. The VUE technique is superior to VMI in producing virtual noncontrast images.</description><subject>Attenuation</subject><subject>Computed tomography</subject><subject>CT imaging</subject><subject>Diagnostic imaging</subject><subject>Feasibility studies</subject><subject>Image contrast</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Knee</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Nuclear Medicine</subject><subject>Orthopedics</subject><subject>Pathology</subject><subject>Radiology</subject><subject>Scientific Article</subject><subject>Shoulder</subject><subject>Three dimensional models</subject><subject>Two dimensional models</subject><issn>0364-2348</issn><issn>1432-2161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1r3DAQhkVJabZp_0AOwZBLL0pHH5bt3ML2EwK9pGcxa81sHLz2RrIP_vdVumlDSihzGBg978toXiFOFVwogOpjAtClk6BBgnFgZPNKrJQ1Wmrl1JFY5amV2tj6WLxN6Q5AVVXp3ohjoxtbN2BWAj7N2EsaKG6XYn1TYJxu47iNuL9dLgssmDB1m67vpqVI0xyWd-I1Y5_o_WM_ET-_fL5Zf5PXP75-X19dy9ZaPUlFBKXDZlMyt8GYmi1ah4BcNYo4cAjMoWQE0ggaSWFWMLaBTcuNMyfiw8F3H8f7mdLkd11qqe9xoHFOXltrTe1cYzN6_g96N85xyNtlqq7BQAXlE7XFnnw38DhFbB9M_VVlVD5gvlqmLl6gcgXade04EHd5_kygD4I2jilFYr-P3Q7j4hX4h5j8ISafY_K_Y_JNFp09bjxvdhT-Sv7kkgFzAFJ-GrYUn770H9tfWzKbqg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Sandhu, Rashpal</creator><creator>Aslan, Mercan</creator><creator>Obuchowski, Nancy</creator><creator>Primak, Andrew</creator><creator>Karim, Wadih</creator><creator>Subhas, Naveen</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0502-6280</orcidid></search><sort><creationdate>20210401</creationdate><title>Dual-energy CT arthrography: a feasibility study</title><author>Sandhu, Rashpal ; Aslan, Mercan ; Obuchowski, Nancy ; Primak, Andrew ; Karim, Wadih ; Subhas, Naveen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-1ee056a9b5ffcd338f4a46a0af791efdfddffd5fa0e2a02ae1aee0facdf3cf963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Attenuation</topic><topic>Computed tomography</topic><topic>CT imaging</topic><topic>Diagnostic imaging</topic><topic>Feasibility studies</topic><topic>Image contrast</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Knee</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Nuclear Medicine</topic><topic>Orthopedics</topic><topic>Pathology</topic><topic>Radiology</topic><topic>Scientific Article</topic><topic>Shoulder</topic><topic>Three dimensional models</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandhu, Rashpal</creatorcontrib><creatorcontrib>Aslan, Mercan</creatorcontrib><creatorcontrib>Obuchowski, Nancy</creatorcontrib><creatorcontrib>Primak, Andrew</creatorcontrib><creatorcontrib>Karim, Wadih</creatorcontrib><creatorcontrib>Subhas, Naveen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Skeletal radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandhu, Rashpal</au><au>Aslan, Mercan</au><au>Obuchowski, Nancy</au><au>Primak, Andrew</au><au>Karim, Wadih</au><au>Subhas, Naveen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-energy CT arthrography: a feasibility study</atitle><jtitle>Skeletal radiology</jtitle><stitle>Skeletal Radiol</stitle><addtitle>Skeletal Radiol</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>50</volume><issue>4</issue><spage>693</spage><epage>703</epage><pages>693-703</pages><issn>0364-2348</issn><eissn>1432-2161</eissn><abstract>Objective To evaluate the feasibility of producing 2-dimensional (2D) virtual noncontrast images and 3-dimensional (3D) bone models from dual-energy computed tomography (DECT) arthrograms and to determine whether this is best accomplished using 190 keV virtual monoenergetic images (VMI) or virtual unenhanced (VUE) images. Materials and methods VMI and VUE images were retrospectively reconstructed from patients with internal derangement of the shoulder or knee joint who underwent DECT arthrography between September 2017 and August 2019. A region of interest was placed in the area of brightest contrast, and the mean attenuation (in Hounsfield units [HUs]) was recorded. Two blinded musculoskeletal radiologists qualitatively graded the 2D images and 3D models using scores ranging from 0 to 3 (0 considered optimal). Results Twenty-six patients (mean age ± SD, 57.5 ± 16.8 years; 6 women) were included in the study. The contrast attenuation on VUE images (overall mean ± SD, 10.5 ± 16.4 HU; knee, 19.3 ± 10.7 HU; shoulder, 5.0 ± 17.2 HU) was significantly lower ( p  &lt; 0.001 for all comparisons) than on VMI (overall mean ± SD, 107.7 ± 43.8 HU; knee, 104.6 ± 31.1 HU; shoulder, 109.6 ± 51.0 HU). The proportion of cases with optimal scores (0 or 1) was significantly higher with VUE than with VMI for both 2D and 3D images ( p  &lt; 0.001). Conclusions DECT arthrography can be used to produce 2D virtual noncontrast images and to generate 3D bone models. The VUE technique is superior to VMI in producing virtual noncontrast images.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32948903</pmid><doi>10.1007/s00256-020-03603-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0502-6280</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0364-2348
ispartof Skeletal radiology, 2021-04, Vol.50 (4), p.693-703
issn 0364-2348
1432-2161
language eng
recordid cdi_proquest_miscellaneous_2444386694
source SpringerLink Journals - AutoHoldings
subjects Attenuation
Computed tomography
CT imaging
Diagnostic imaging
Feasibility studies
Image contrast
Image reconstruction
Imaging
Knee
Medical imaging
Medicine
Medicine & Public Health
Nuclear Medicine
Orthopedics
Pathology
Radiology
Scientific Article
Shoulder
Three dimensional models
Two dimensional models
title Dual-energy CT arthrography: a feasibility study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-energy%20CT%20arthrography:%20a%20feasibility%20study&rft.jtitle=Skeletal%20radiology&rft.au=Sandhu,%20Rashpal&rft.date=2021-04-01&rft.volume=50&rft.issue=4&rft.spage=693&rft.epage=703&rft.pages=693-703&rft.issn=0364-2348&rft.eissn=1432-2161&rft_id=info:doi/10.1007/s00256-020-03603-9&rft_dat=%3Cgale_proqu%3EA731360216%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488030705&rft_id=info:pmid/32948903&rft_galeid=A731360216&rfr_iscdi=true