Nonlinear dipole inversion (NDI) enables robust quantitative susceptibility mapping (QSM)

High‐quality Quantitative Susceptibility Mapping (QSM) with Nonlinear Dipole Inversion (NDI) is developed with pre‐determined regularization while matching the image quality of state‐of‐the‐art reconstruction techniques and avoiding over‐smoothing that these techniques often suffer from. NDI is flex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NMR in biomedicine 2020-12, Vol.33 (12), p.e4271-n/a
Hauptverfasser: Polak, Daniel, Chatnuntawech, Itthi, Yoon, Jaeyeon, Iyer, Siddharth Srinivasan, Milovic, Carlos, Lee, Jongho, Bachert, Peter, Adalsteinsson, Elfar, Setsompop, Kawin, Bilgic, Berkin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page e4271
container_title NMR in biomedicine
container_volume 33
creator Polak, Daniel
Chatnuntawech, Itthi
Yoon, Jaeyeon
Iyer, Siddharth Srinivasan
Milovic, Carlos
Lee, Jongho
Bachert, Peter
Adalsteinsson, Elfar
Setsompop, Kawin
Bilgic, Berkin
description High‐quality Quantitative Susceptibility Mapping (QSM) with Nonlinear Dipole Inversion (NDI) is developed with pre‐determined regularization while matching the image quality of state‐of‐the‐art reconstruction techniques and avoiding over‐smoothing that these techniques often suffer from. NDI is flexible enough to allow for reconstruction from an arbitrary number of head orientations and outperforms COSMOS even when using as few as 1‐direction data. This is made possible by a nonlinear forward‐model that uses the magnitude as an effective prior, for which we derived a simple gradient descent update rule. We synergistically combine this physics‐model with a Variational Network (VN) to leverage the power of deep learning in the VaNDI algorithm. This technique adopts the simple gradient descent rule from NDI and learns the network parameters during training, hence requires no additional parameter tuning. Further, we evaluate NDI at 7 T using highly accelerated Wave‐CAIPI acquisitions at 0.5 mm isotropic resolution and demonstrate high‐quality QSM from as few as 2‐direction data. NDI enables QSM with pre‐determined regularization while matching the quality of state‐of‐the‐art techniques. This is made possible by a nonlinear forward‐model that uses the magnitude as an effective prior, for which we derived a simple gradient descent update rule. Further improvement was achieved by combining this physics‐model with deep learning (VaNDI), where the NDI update rule was adopted and regularizers are learnt from training data.
doi_str_mv 10.1002/nbm.4271
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2444384229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444384229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4881-d013b31f45b437946d058e3857bfd4ba63a97924751bbe31b1a7ec24454406d3</originalsourceid><addsrcrecordid>eNp10EtLAzEUhuEgiq0X8BdIwE1djOZy0iRLrbeCVkQ3roakk0pkJjMmM5X-e8c7CK7O5uHl8CG0R8kRJYQdB1sdAZN0DQ0p0TqjoNk6GhItWMZBkQHaSumZEKKAs0004IxIJcV4iB5ndSh9cCbiwjd16bAPSxeTrwMezc6mh9gFY0uXcKxtl1r80pnQ-ta0fulw6tLcNa23vvTtClemaXx4wqO7-5vDHbSxMGVyu193Gz1cnD9MrrLr28vp5OQ6m4NSNCsI5ZbTBQgLXGoYF0Qox5WQdlGANWNutNQMpKDWOk4tNdLNGYAAIOOCb6PRZ7aJ9UvnUptXvn-qLE1wdZfyXgJXwJju6cEf-lx3MfTP9UpIqgUQ9Rucxzql6BZ5E31l4iqnJH9fO-_Xzt_X7un-V7CzlSt-4Pe8Pcg-wasv3erfUD47vfkIvgG_hIbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457195408</pqid></control><display><type>article</type><title>Nonlinear dipole inversion (NDI) enables robust quantitative susceptibility mapping (QSM)</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Polak, Daniel ; Chatnuntawech, Itthi ; Yoon, Jaeyeon ; Iyer, Siddharth Srinivasan ; Milovic, Carlos ; Lee, Jongho ; Bachert, Peter ; Adalsteinsson, Elfar ; Setsompop, Kawin ; Bilgic, Berkin</creator><creatorcontrib>Polak, Daniel ; Chatnuntawech, Itthi ; Yoon, Jaeyeon ; Iyer, Siddharth Srinivasan ; Milovic, Carlos ; Lee, Jongho ; Bachert, Peter ; Adalsteinsson, Elfar ; Setsompop, Kawin ; Bilgic, Berkin</creatorcontrib><description>High‐quality Quantitative Susceptibility Mapping (QSM) with Nonlinear Dipole Inversion (NDI) is developed with pre‐determined regularization while matching the image quality of state‐of‐the‐art reconstruction techniques and avoiding over‐smoothing that these techniques often suffer from. NDI is flexible enough to allow for reconstruction from an arbitrary number of head orientations and outperforms COSMOS even when using as few as 1‐direction data. This is made possible by a nonlinear forward‐model that uses the magnitude as an effective prior, for which we derived a simple gradient descent update rule. We synergistically combine this physics‐model with a Variational Network (VN) to leverage the power of deep learning in the VaNDI algorithm. This technique adopts the simple gradient descent rule from NDI and learns the network parameters during training, hence requires no additional parameter tuning. Further, we evaluate NDI at 7 T using highly accelerated Wave‐CAIPI acquisitions at 0.5 mm isotropic resolution and demonstrate high‐quality QSM from as few as 2‐direction data. NDI enables QSM with pre‐determined regularization while matching the quality of state‐of‐the‐art techniques. This is made possible by a nonlinear forward‐model that uses the magnitude as an effective prior, for which we derived a simple gradient descent update rule. Further improvement was achieved by combining this physics‐model with deep learning (VaNDI), where the NDI update rule was adopted and regularizers are learnt from training data.</description><identifier>ISSN: 0952-3480</identifier><identifier>EISSN: 1099-1492</identifier><identifier>DOI: 10.1002/nbm.4271</identifier><identifier>PMID: 32078756</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Biological products ; deep learning ; Dipoles ; Humans ; Image Processing, Computer-Assisted ; Image quality ; Inversion ; Machine learning ; Magnetic Resonance Imaging ; Mapping ; Mathematical models ; Nonlinear Dynamics ; nonlinear inversion ; Parameters ; quantitative susceptibility mapping ; Reconstruction ; Regularization</subject><ispartof>NMR in biomedicine, 2020-12, Vol.33 (12), p.e4271-n/a</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4881-d013b31f45b437946d058e3857bfd4ba63a97924751bbe31b1a7ec24454406d3</citedby><cites>FETCH-LOGICAL-c4881-d013b31f45b437946d058e3857bfd4ba63a97924751bbe31b1a7ec24454406d3</cites><orcidid>0000-0001-9781-1528 ; 0000-0002-9485-5434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnbm.4271$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnbm.4271$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32078756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Polak, Daniel</creatorcontrib><creatorcontrib>Chatnuntawech, Itthi</creatorcontrib><creatorcontrib>Yoon, Jaeyeon</creatorcontrib><creatorcontrib>Iyer, Siddharth Srinivasan</creatorcontrib><creatorcontrib>Milovic, Carlos</creatorcontrib><creatorcontrib>Lee, Jongho</creatorcontrib><creatorcontrib>Bachert, Peter</creatorcontrib><creatorcontrib>Adalsteinsson, Elfar</creatorcontrib><creatorcontrib>Setsompop, Kawin</creatorcontrib><creatorcontrib>Bilgic, Berkin</creatorcontrib><title>Nonlinear dipole inversion (NDI) enables robust quantitative susceptibility mapping (QSM)</title><title>NMR in biomedicine</title><addtitle>NMR Biomed</addtitle><description>High‐quality Quantitative Susceptibility Mapping (QSM) with Nonlinear Dipole Inversion (NDI) is developed with pre‐determined regularization while matching the image quality of state‐of‐the‐art reconstruction techniques and avoiding over‐smoothing that these techniques often suffer from. NDI is flexible enough to allow for reconstruction from an arbitrary number of head orientations and outperforms COSMOS even when using as few as 1‐direction data. This is made possible by a nonlinear forward‐model that uses the magnitude as an effective prior, for which we derived a simple gradient descent update rule. We synergistically combine this physics‐model with a Variational Network (VN) to leverage the power of deep learning in the VaNDI algorithm. This technique adopts the simple gradient descent rule from NDI and learns the network parameters during training, hence requires no additional parameter tuning. Further, we evaluate NDI at 7 T using highly accelerated Wave‐CAIPI acquisitions at 0.5 mm isotropic resolution and demonstrate high‐quality QSM from as few as 2‐direction data. NDI enables QSM with pre‐determined regularization while matching the quality of state‐of‐the‐art techniques. This is made possible by a nonlinear forward‐model that uses the magnitude as an effective prior, for which we derived a simple gradient descent update rule. Further improvement was achieved by combining this physics‐model with deep learning (VaNDI), where the NDI update rule was adopted and regularizers are learnt from training data.</description><subject>Algorithms</subject><subject>Biological products</subject><subject>deep learning</subject><subject>Dipoles</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image quality</subject><subject>Inversion</subject><subject>Machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Nonlinear Dynamics</subject><subject>nonlinear inversion</subject><subject>Parameters</subject><subject>quantitative susceptibility mapping</subject><subject>Reconstruction</subject><subject>Regularization</subject><issn>0952-3480</issn><issn>1099-1492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10EtLAzEUhuEgiq0X8BdIwE1djOZy0iRLrbeCVkQ3roakk0pkJjMmM5X-e8c7CK7O5uHl8CG0R8kRJYQdB1sdAZN0DQ0p0TqjoNk6GhItWMZBkQHaSumZEKKAs0004IxIJcV4iB5ndSh9cCbiwjd16bAPSxeTrwMezc6mh9gFY0uXcKxtl1r80pnQ-ta0fulw6tLcNa23vvTtClemaXx4wqO7-5vDHbSxMGVyu193Gz1cnD9MrrLr28vp5OQ6m4NSNCsI5ZbTBQgLXGoYF0Qox5WQdlGANWNutNQMpKDWOk4tNdLNGYAAIOOCb6PRZ7aJ9UvnUptXvn-qLE1wdZfyXgJXwJju6cEf-lx3MfTP9UpIqgUQ9Rucxzql6BZ5E31l4iqnJH9fO-_Xzt_X7un-V7CzlSt-4Pe8Pcg-wasv3erfUD47vfkIvgG_hIbc</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Polak, Daniel</creator><creator>Chatnuntawech, Itthi</creator><creator>Yoon, Jaeyeon</creator><creator>Iyer, Siddharth Srinivasan</creator><creator>Milovic, Carlos</creator><creator>Lee, Jongho</creator><creator>Bachert, Peter</creator><creator>Adalsteinsson, Elfar</creator><creator>Setsompop, Kawin</creator><creator>Bilgic, Berkin</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9781-1528</orcidid><orcidid>https://orcid.org/0000-0002-9485-5434</orcidid></search><sort><creationdate>202012</creationdate><title>Nonlinear dipole inversion (NDI) enables robust quantitative susceptibility mapping (QSM)</title><author>Polak, Daniel ; Chatnuntawech, Itthi ; Yoon, Jaeyeon ; Iyer, Siddharth Srinivasan ; Milovic, Carlos ; Lee, Jongho ; Bachert, Peter ; Adalsteinsson, Elfar ; Setsompop, Kawin ; Bilgic, Berkin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4881-d013b31f45b437946d058e3857bfd4ba63a97924751bbe31b1a7ec24454406d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biological products</topic><topic>deep learning</topic><topic>Dipoles</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image quality</topic><topic>Inversion</topic><topic>Machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Nonlinear Dynamics</topic><topic>nonlinear inversion</topic><topic>Parameters</topic><topic>quantitative susceptibility mapping</topic><topic>Reconstruction</topic><topic>Regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polak, Daniel</creatorcontrib><creatorcontrib>Chatnuntawech, Itthi</creatorcontrib><creatorcontrib>Yoon, Jaeyeon</creatorcontrib><creatorcontrib>Iyer, Siddharth Srinivasan</creatorcontrib><creatorcontrib>Milovic, Carlos</creatorcontrib><creatorcontrib>Lee, Jongho</creatorcontrib><creatorcontrib>Bachert, Peter</creatorcontrib><creatorcontrib>Adalsteinsson, Elfar</creatorcontrib><creatorcontrib>Setsompop, Kawin</creatorcontrib><creatorcontrib>Bilgic, Berkin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NMR in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polak, Daniel</au><au>Chatnuntawech, Itthi</au><au>Yoon, Jaeyeon</au><au>Iyer, Siddharth Srinivasan</au><au>Milovic, Carlos</au><au>Lee, Jongho</au><au>Bachert, Peter</au><au>Adalsteinsson, Elfar</au><au>Setsompop, Kawin</au><au>Bilgic, Berkin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dipole inversion (NDI) enables robust quantitative susceptibility mapping (QSM)</atitle><jtitle>NMR in biomedicine</jtitle><addtitle>NMR Biomed</addtitle><date>2020-12</date><risdate>2020</risdate><volume>33</volume><issue>12</issue><spage>e4271</spage><epage>n/a</epage><pages>e4271-n/a</pages><issn>0952-3480</issn><eissn>1099-1492</eissn><abstract>High‐quality Quantitative Susceptibility Mapping (QSM) with Nonlinear Dipole Inversion (NDI) is developed with pre‐determined regularization while matching the image quality of state‐of‐the‐art reconstruction techniques and avoiding over‐smoothing that these techniques often suffer from. NDI is flexible enough to allow for reconstruction from an arbitrary number of head orientations and outperforms COSMOS even when using as few as 1‐direction data. This is made possible by a nonlinear forward‐model that uses the magnitude as an effective prior, for which we derived a simple gradient descent update rule. We synergistically combine this physics‐model with a Variational Network (VN) to leverage the power of deep learning in the VaNDI algorithm. This technique adopts the simple gradient descent rule from NDI and learns the network parameters during training, hence requires no additional parameter tuning. Further, we evaluate NDI at 7 T using highly accelerated Wave‐CAIPI acquisitions at 0.5 mm isotropic resolution and demonstrate high‐quality QSM from as few as 2‐direction data. NDI enables QSM with pre‐determined regularization while matching the quality of state‐of‐the‐art techniques. This is made possible by a nonlinear forward‐model that uses the magnitude as an effective prior, for which we derived a simple gradient descent update rule. Further improvement was achieved by combining this physics‐model with deep learning (VaNDI), where the NDI update rule was adopted and regularizers are learnt from training data.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32078756</pmid><doi>10.1002/nbm.4271</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9781-1528</orcidid><orcidid>https://orcid.org/0000-0002-9485-5434</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0952-3480
ispartof NMR in biomedicine, 2020-12, Vol.33 (12), p.e4271-n/a
issn 0952-3480
1099-1492
language eng
recordid cdi_proquest_miscellaneous_2444384229
source MEDLINE; Access via Wiley Online Library
subjects Algorithms
Biological products
deep learning
Dipoles
Humans
Image Processing, Computer-Assisted
Image quality
Inversion
Machine learning
Magnetic Resonance Imaging
Mapping
Mathematical models
Nonlinear Dynamics
nonlinear inversion
Parameters
quantitative susceptibility mapping
Reconstruction
Regularization
title Nonlinear dipole inversion (NDI) enables robust quantitative susceptibility mapping (QSM)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dipole%20inversion%20(NDI)%20enables%20robust%20quantitative%20susceptibility%20mapping%20(QSM)&rft.jtitle=NMR%20in%20biomedicine&rft.au=Polak,%20Daniel&rft.date=2020-12&rft.volume=33&rft.issue=12&rft.spage=e4271&rft.epage=n/a&rft.pages=e4271-n/a&rft.issn=0952-3480&rft.eissn=1099-1492&rft_id=info:doi/10.1002/nbm.4271&rft_dat=%3Cproquest_cross%3E2444384229%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457195408&rft_id=info:pmid/32078756&rfr_iscdi=true