Histone Deacetylase 3 Couples Mitochondria to Drive IL-1β-Dependent Inflammation by Configuring Fatty Acid Oxidation

Immune cell function depends on specific metabolic programs dictated by mitochondria, including nutrient oxidation, macromolecule synthesis, and post-translational modifications. Mitochondrial adaptations have been linked to acute and chronic inflammation, but the metabolic cues and precise mechanis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2020-10, Vol.80 (1), p.43-58.e7
Hauptverfasser: Chi, Zhexu, Chen, Sheng, Xu, Ting, Zhen, Wenxuan, Yu, Weiwei, Jiang, Danlu, Guo, Xingchen, Wang, Zhen, Zhang, Kailian, Li, Mobai, Zhang, Jian, Fang, Hui, Yang, Dehang, Ye, Qizhen, Yang, Xuyan, Lin, Hui, Yang, Fan, Zhang, Xue, Wang, Di
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58.e7
container_issue 1
container_start_page 43
container_title Molecular cell
container_volume 80
creator Chi, Zhexu
Chen, Sheng
Xu, Ting
Zhen, Wenxuan
Yu, Weiwei
Jiang, Danlu
Guo, Xingchen
Wang, Zhen
Zhang, Kailian
Li, Mobai
Zhang, Jian
Fang, Hui
Yang, Dehang
Ye, Qizhen
Yang, Xuyan
Lin, Hui
Yang, Fan
Zhang, Xue
Wang, Di
description Immune cell function depends on specific metabolic programs dictated by mitochondria, including nutrient oxidation, macromolecule synthesis, and post-translational modifications. Mitochondrial adaptations have been linked to acute and chronic inflammation, but the metabolic cues and precise mechanisms remain unclear. Here we reveal that histone deacetylase 3 (HDAC3) is essential for shaping mitochondrial adaptations for IL-1β production in macrophages through non-histone deacetylation. In vivo, HDAC3 promoted lipopolysaccharide-induced acute inflammation and high-fat diet-induced chronic inflammation by enhancing NLRP3-dependent caspase-1 activation. HDAC3 configured the lipid profile in stimulated macrophages and restricted fatty acid oxidation (FAO) supported by exogenous fatty acids for mitochondria to acquire their adaptations and depolarization. Rather than affecting nuclear gene expression, HDAC3 translocated to mitochondria to deacetylate and inactivate an FAO enzyme, mitochondrial trifunctional enzyme subunit α. HDAC3 may serve as a controlling node that balances between acquiring mitochondrial adaptations and sustaining their fitness for IL-1β-dependent inflammation. [Display omitted] •HDAC3 promotes IL-1β-dependent inflammation•HDAC3 restricts fatty acid oxidation for optimal NLRP3 inflammasome activation•HDAC3 translocates to mitochondria upon NLRP3 inflammasome activation•HDAC3 deacetylates HADHA at lysine 303 to restrain its enzyme activity Mitochondrial adaptations have been intimately linked to acute and chronic inflammation, but the metabolic cues and precise mechanisms remain unclear. Chi et al. show that HDAC3 translocates to mitochondria to deacetylate the FAO enzyme HADHA for optimal NLRP3 inflammasome activation.
doi_str_mv 10.1016/j.molcel.2020.08.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2443881903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276520305785</els_id><sourcerecordid>2551973726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-ce13d2b7fc770c1e350f36b8e2e1c2c43370596e308c59dd4a6ac6bc2c1b8ce63</originalsourceid><addsrcrecordid>eNqNkcFu2zAMho1hBZalfYMedNzFnmTJtnwZECTrEiBFL-tZkCm6U2BLmSQXy2v1QfZMdZuei55IgN9PgPyy7JrRglFWfz8Uox8Ah6KkJS2oLCirPmULRtsmF6wWn9_6sqmrL9nXGA-UMlHJdpFNWxuTd0g2qAHTadARCSdrPx0HjOTWJg9_vDPBapI82QT7iGS3z9n_p3yDR3QGXSI71w96HHWy3pHuNMddbx-mYN0DudEpncgKrCF3_6x5ZS6zi14PEa_e6jK7v_n5e73N93e_duvVPgfBZMoBGTdl1_TQNBQY8or2vO4klsigBMF5Q6u2Rk4lVK0xQtca6m4esU4C1nyZfTvvPQb_d8KY1Gjj_KhBO_RTVGVVsbbhTfkBVAguJWspn1FxRiH4GAP26hjsqMNJMapehKiDOgtRL0IUlWoWMsd-nGM4X_xoMagIFh2gsQEhKePt-wueAbOOl1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443881903</pqid></control><display><type>article</type><title>Histone Deacetylase 3 Couples Mitochondria to Drive IL-1β-Dependent Inflammation by Configuring Fatty Acid Oxidation</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Chi, Zhexu ; Chen, Sheng ; Xu, Ting ; Zhen, Wenxuan ; Yu, Weiwei ; Jiang, Danlu ; Guo, Xingchen ; Wang, Zhen ; Zhang, Kailian ; Li, Mobai ; Zhang, Jian ; Fang, Hui ; Yang, Dehang ; Ye, Qizhen ; Yang, Xuyan ; Lin, Hui ; Yang, Fan ; Zhang, Xue ; Wang, Di</creator><creatorcontrib>Chi, Zhexu ; Chen, Sheng ; Xu, Ting ; Zhen, Wenxuan ; Yu, Weiwei ; Jiang, Danlu ; Guo, Xingchen ; Wang, Zhen ; Zhang, Kailian ; Li, Mobai ; Zhang, Jian ; Fang, Hui ; Yang, Dehang ; Ye, Qizhen ; Yang, Xuyan ; Lin, Hui ; Yang, Fan ; Zhang, Xue ; Wang, Di</creatorcontrib><description>Immune cell function depends on specific metabolic programs dictated by mitochondria, including nutrient oxidation, macromolecule synthesis, and post-translational modifications. Mitochondrial adaptations have been linked to acute and chronic inflammation, but the metabolic cues and precise mechanisms remain unclear. Here we reveal that histone deacetylase 3 (HDAC3) is essential for shaping mitochondrial adaptations for IL-1β production in macrophages through non-histone deacetylation. In vivo, HDAC3 promoted lipopolysaccharide-induced acute inflammation and high-fat diet-induced chronic inflammation by enhancing NLRP3-dependent caspase-1 activation. HDAC3 configured the lipid profile in stimulated macrophages and restricted fatty acid oxidation (FAO) supported by exogenous fatty acids for mitochondria to acquire their adaptations and depolarization. Rather than affecting nuclear gene expression, HDAC3 translocated to mitochondria to deacetylate and inactivate an FAO enzyme, mitochondrial trifunctional enzyme subunit α. HDAC3 may serve as a controlling node that balances between acquiring mitochondrial adaptations and sustaining their fitness for IL-1β-dependent inflammation. [Display omitted] •HDAC3 promotes IL-1β-dependent inflammation•HDAC3 restricts fatty acid oxidation for optimal NLRP3 inflammasome activation•HDAC3 translocates to mitochondria upon NLRP3 inflammasome activation•HDAC3 deacetylates HADHA at lysine 303 to restrain its enzyme activity Mitochondrial adaptations have been intimately linked to acute and chronic inflammation, but the metabolic cues and precise mechanisms remain unclear. Chi et al. show that HDAC3 translocates to mitochondria to deacetylate the FAO enzyme HADHA for optimal NLRP3 inflammasome activation.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2020.08.015</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>beta oxidation ; caspase-1 ; gene expression ; high fat diet ; histone deacetylase ; inflammation ; lipid composition ; macrophages ; mitochondria ; oxidation ; protein subunits</subject><ispartof>Molecular cell, 2020-10, Vol.80 (1), p.43-58.e7</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-ce13d2b7fc770c1e350f36b8e2e1c2c43370596e308c59dd4a6ac6bc2c1b8ce63</citedby><cites>FETCH-LOGICAL-c418t-ce13d2b7fc770c1e350f36b8e2e1c2c43370596e308c59dd4a6ac6bc2c1b8ce63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276520305785$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Chi, Zhexu</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Xu, Ting</creatorcontrib><creatorcontrib>Zhen, Wenxuan</creatorcontrib><creatorcontrib>Yu, Weiwei</creatorcontrib><creatorcontrib>Jiang, Danlu</creatorcontrib><creatorcontrib>Guo, Xingchen</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Zhang, Kailian</creatorcontrib><creatorcontrib>Li, Mobai</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Fang, Hui</creatorcontrib><creatorcontrib>Yang, Dehang</creatorcontrib><creatorcontrib>Ye, Qizhen</creatorcontrib><creatorcontrib>Yang, Xuyan</creatorcontrib><creatorcontrib>Lin, Hui</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><title>Histone Deacetylase 3 Couples Mitochondria to Drive IL-1β-Dependent Inflammation by Configuring Fatty Acid Oxidation</title><title>Molecular cell</title><description>Immune cell function depends on specific metabolic programs dictated by mitochondria, including nutrient oxidation, macromolecule synthesis, and post-translational modifications. Mitochondrial adaptations have been linked to acute and chronic inflammation, but the metabolic cues and precise mechanisms remain unclear. Here we reveal that histone deacetylase 3 (HDAC3) is essential for shaping mitochondrial adaptations for IL-1β production in macrophages through non-histone deacetylation. In vivo, HDAC3 promoted lipopolysaccharide-induced acute inflammation and high-fat diet-induced chronic inflammation by enhancing NLRP3-dependent caspase-1 activation. HDAC3 configured the lipid profile in stimulated macrophages and restricted fatty acid oxidation (FAO) supported by exogenous fatty acids for mitochondria to acquire their adaptations and depolarization. Rather than affecting nuclear gene expression, HDAC3 translocated to mitochondria to deacetylate and inactivate an FAO enzyme, mitochondrial trifunctional enzyme subunit α. HDAC3 may serve as a controlling node that balances between acquiring mitochondrial adaptations and sustaining their fitness for IL-1β-dependent inflammation. [Display omitted] •HDAC3 promotes IL-1β-dependent inflammation•HDAC3 restricts fatty acid oxidation for optimal NLRP3 inflammasome activation•HDAC3 translocates to mitochondria upon NLRP3 inflammasome activation•HDAC3 deacetylates HADHA at lysine 303 to restrain its enzyme activity Mitochondrial adaptations have been intimately linked to acute and chronic inflammation, but the metabolic cues and precise mechanisms remain unclear. Chi et al. show that HDAC3 translocates to mitochondria to deacetylate the FAO enzyme HADHA for optimal NLRP3 inflammasome activation.</description><subject>beta oxidation</subject><subject>caspase-1</subject><subject>gene expression</subject><subject>high fat diet</subject><subject>histone deacetylase</subject><subject>inflammation</subject><subject>lipid composition</subject><subject>macrophages</subject><subject>mitochondria</subject><subject>oxidation</subject><subject>protein subunits</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu2zAMho1hBZalfYMedNzFnmTJtnwZECTrEiBFL-tZkCm6U2BLmSQXy2v1QfZMdZuei55IgN9PgPyy7JrRglFWfz8Uox8Ah6KkJS2oLCirPmULRtsmF6wWn9_6sqmrL9nXGA-UMlHJdpFNWxuTd0g2qAHTadARCSdrPx0HjOTWJg9_vDPBapI82QT7iGS3z9n_p3yDR3QGXSI71w96HHWy3pHuNMddbx-mYN0DudEpncgKrCF3_6x5ZS6zi14PEa_e6jK7v_n5e73N93e_duvVPgfBZMoBGTdl1_TQNBQY8or2vO4klsigBMF5Q6u2Rk4lVK0xQtca6m4esU4C1nyZfTvvPQb_d8KY1Gjj_KhBO_RTVGVVsbbhTfkBVAguJWspn1FxRiH4GAP26hjsqMNJMapehKiDOgtRL0IUlWoWMsd-nGM4X_xoMagIFh2gsQEhKePt-wueAbOOl1s</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Chi, Zhexu</creator><creator>Chen, Sheng</creator><creator>Xu, Ting</creator><creator>Zhen, Wenxuan</creator><creator>Yu, Weiwei</creator><creator>Jiang, Danlu</creator><creator>Guo, Xingchen</creator><creator>Wang, Zhen</creator><creator>Zhang, Kailian</creator><creator>Li, Mobai</creator><creator>Zhang, Jian</creator><creator>Fang, Hui</creator><creator>Yang, Dehang</creator><creator>Ye, Qizhen</creator><creator>Yang, Xuyan</creator><creator>Lin, Hui</creator><creator>Yang, Fan</creator><creator>Zhang, Xue</creator><creator>Wang, Di</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20201001</creationdate><title>Histone Deacetylase 3 Couples Mitochondria to Drive IL-1β-Dependent Inflammation by Configuring Fatty Acid Oxidation</title><author>Chi, Zhexu ; Chen, Sheng ; Xu, Ting ; Zhen, Wenxuan ; Yu, Weiwei ; Jiang, Danlu ; Guo, Xingchen ; Wang, Zhen ; Zhang, Kailian ; Li, Mobai ; Zhang, Jian ; Fang, Hui ; Yang, Dehang ; Ye, Qizhen ; Yang, Xuyan ; Lin, Hui ; Yang, Fan ; Zhang, Xue ; Wang, Di</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-ce13d2b7fc770c1e350f36b8e2e1c2c43370596e308c59dd4a6ac6bc2c1b8ce63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>beta oxidation</topic><topic>caspase-1</topic><topic>gene expression</topic><topic>high fat diet</topic><topic>histone deacetylase</topic><topic>inflammation</topic><topic>lipid composition</topic><topic>macrophages</topic><topic>mitochondria</topic><topic>oxidation</topic><topic>protein subunits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi, Zhexu</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Xu, Ting</creatorcontrib><creatorcontrib>Zhen, Wenxuan</creatorcontrib><creatorcontrib>Yu, Weiwei</creatorcontrib><creatorcontrib>Jiang, Danlu</creatorcontrib><creatorcontrib>Guo, Xingchen</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Zhang, Kailian</creatorcontrib><creatorcontrib>Li, Mobai</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Fang, Hui</creatorcontrib><creatorcontrib>Yang, Dehang</creatorcontrib><creatorcontrib>Ye, Qizhen</creatorcontrib><creatorcontrib>Yang, Xuyan</creatorcontrib><creatorcontrib>Lin, Hui</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi, Zhexu</au><au>Chen, Sheng</au><au>Xu, Ting</au><au>Zhen, Wenxuan</au><au>Yu, Weiwei</au><au>Jiang, Danlu</au><au>Guo, Xingchen</au><au>Wang, Zhen</au><au>Zhang, Kailian</au><au>Li, Mobai</au><au>Zhang, Jian</au><au>Fang, Hui</au><au>Yang, Dehang</au><au>Ye, Qizhen</au><au>Yang, Xuyan</au><au>Lin, Hui</au><au>Yang, Fan</au><au>Zhang, Xue</au><au>Wang, Di</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Histone Deacetylase 3 Couples Mitochondria to Drive IL-1β-Dependent Inflammation by Configuring Fatty Acid Oxidation</atitle><jtitle>Molecular cell</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>80</volume><issue>1</issue><spage>43</spage><epage>58.e7</epage><pages>43-58.e7</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Immune cell function depends on specific metabolic programs dictated by mitochondria, including nutrient oxidation, macromolecule synthesis, and post-translational modifications. Mitochondrial adaptations have been linked to acute and chronic inflammation, but the metabolic cues and precise mechanisms remain unclear. Here we reveal that histone deacetylase 3 (HDAC3) is essential for shaping mitochondrial adaptations for IL-1β production in macrophages through non-histone deacetylation. In vivo, HDAC3 promoted lipopolysaccharide-induced acute inflammation and high-fat diet-induced chronic inflammation by enhancing NLRP3-dependent caspase-1 activation. HDAC3 configured the lipid profile in stimulated macrophages and restricted fatty acid oxidation (FAO) supported by exogenous fatty acids for mitochondria to acquire their adaptations and depolarization. Rather than affecting nuclear gene expression, HDAC3 translocated to mitochondria to deacetylate and inactivate an FAO enzyme, mitochondrial trifunctional enzyme subunit α. HDAC3 may serve as a controlling node that balances between acquiring mitochondrial adaptations and sustaining their fitness for IL-1β-dependent inflammation. [Display omitted] •HDAC3 promotes IL-1β-dependent inflammation•HDAC3 restricts fatty acid oxidation for optimal NLRP3 inflammasome activation•HDAC3 translocates to mitochondria upon NLRP3 inflammasome activation•HDAC3 deacetylates HADHA at lysine 303 to restrain its enzyme activity Mitochondrial adaptations have been intimately linked to acute and chronic inflammation, but the metabolic cues and precise mechanisms remain unclear. Chi et al. show that HDAC3 translocates to mitochondria to deacetylate the FAO enzyme HADHA for optimal NLRP3 inflammasome activation.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.molcel.2020.08.015</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2020-10, Vol.80 (1), p.43-58.e7
issn 1097-2765
1097-4164
language eng
recordid cdi_proquest_miscellaneous_2443881903
source Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects beta oxidation
caspase-1
gene expression
high fat diet
histone deacetylase
inflammation
lipid composition
macrophages
mitochondria
oxidation
protein subunits
title Histone Deacetylase 3 Couples Mitochondria to Drive IL-1β-Dependent Inflammation by Configuring Fatty Acid Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Histone%20Deacetylase%203%20Couples%20Mitochondria%20to%20Drive%20IL-1%CE%B2-Dependent%20Inflammation%20by%20Configuring%20Fatty%20Acid%20Oxidation&rft.jtitle=Molecular%20cell&rft.au=Chi,%20Zhexu&rft.date=2020-10-01&rft.volume=80&rft.issue=1&rft.spage=43&rft.epage=58.e7&rft.pages=43-58.e7&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2020.08.015&rft_dat=%3Cproquest_cross%3E2551973726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443881903&rft_id=info:pmid/&rft_els_id=S1097276520305785&rfr_iscdi=true