Equine uridine diphospho-glucuronosyltransferase 1A1, 2A1, 2B4, 2B31: cDNA cloning, expression and initial characterization of morphine metabolism
Uridine diphospho-glucuronosyltransferases (UGTs) are membrane-bound enzymes that catalyze the conjugation of glucuronic acid onto a diverse set of xenobiotics. Horses efficiently and extensively glucuronidate a number of xenobiotics, including opioids, making UGTs an important group of drug-metabol...
Gespeichert in:
Veröffentlicht in: | Veterinary anaesthesia and analgesia 2020-11, Vol.47 (6), p.763-772 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 772 |
---|---|
container_issue | 6 |
container_start_page | 763 |
container_title | Veterinary anaesthesia and analgesia |
container_volume | 47 |
creator | Hamamoto-Hardman, Briana D. Baden, Russell W. McKemie, Dan S. Knych, Heather K. |
description | Uridine diphospho-glucuronosyltransferases (UGTs) are membrane-bound enzymes that catalyze the conjugation of glucuronic acid onto a diverse set of xenobiotics. Horses efficiently and extensively glucuronidate a number of xenobiotics, including opioids, making UGTs an important group of drug-metabolizing enzymes for the clearance of drugs. Recombinant enzymes have allowed researchers to characterize the metabolism of a variety of drugs. The primary objective was to clone, express and characterize equine UGTs using drugs characterized as UGT substrates in other species. A secondary objective was to characterize the in vitro metabolism of morphine in horses.
In vitro drug metabolism study using liver microsomes and recombinant enzyme systems.
Liver microsomes and RNA from tissue collected from two Thoroughbred mares euthanized for other reasons.
Based on homology to the human UGT2B7, four equine UGT variants were expressed: UGT1A1, UGT2A1, UGT2B31 and UGT2B4. cDNA sequences were cloned and resulting protein expressed in a baculovirus expression system. Functionality of the enzymes was assessed using 4-methylumbelliferone, testosterone, diclofenac and ketoprofen. Recombinant enzyme, control cells, equine liver microsomes and human UGT2B7 supersomes were then incubated with morphine. Concentrations of metabolites were measured using liquid chromatography–tandem mass spectrometry and enzyme kinetics determined.
4-Methylumbelliferone was glucuronidated by all expressed equine UGTs. Testosterone glucuronide was not produced by any of the expressed enzymes, and diclofenac glucuronide and ketoprofen glucuronide were produced by UG2A1 and UGT1A1, respectively. UGT2B31 metabolized morphine to morphine-3-glucuronide and low concentrations of morphine-6-glucuronide.
This is the first successful expression of functional recombinant equine UGTs. UGT2B31 contributes to the glucuronidation of morphine; however, it is probably not the main metabolizing enzyme. These results warrant further investigation of equine UGTs, including expression of additional enzymes and further characterization of UGT2B31 as a contributor to morphine metabolism. |
doi_str_mv | 10.1016/j.vaa.2020.07.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2443523500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1467298720301641</els_id><sourcerecordid>2443523500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-48a6942f878e0fba5c8714647bb7b7cfe1993bca0d8e1761f6d1f907d4e2d88b3</originalsourceid><addsrcrecordid>eNp9ULtu3DAQFIIYiHPOB6RjmeIkL0VJlJLqbJ8fgJE0SU1Q5NLHg0TqSMmw_Rn54kg5w6WLnV1gZ3YxkyRfKWQUaHW-zx6lzHLIIQOeAWMfklNaVDzNm6b8-DbX_FPyOcY9AOVNCafJ3-1hsg7JFKxeurbDzse50oduUlPwzsfnbgzSRYNBRiR0Q9ck_w8XxQKMfifq6ueGqM476x7WBJ-GgDFa74h0mlhnRys7onYySDVisC9yXJbekN6HYbc87nGUre9s7M-SEyO7iF9e-yr5c739fXmb3v-6ubvc3KeKMRjTopZVU-Sm5jWCaWWpaj67LHjb8pYrg7RpWKsk6Bopr6ipNDUNcF1gruu6Zavk2_HuEPxhwjiK3kaFXScd-imKvChYmbMSYKbSI1UFH2NAI4ZgexmeBQWx5C_2Ys5fLPkL4GLOf9b8OGpw9vBoMYioLDqF2gZUo9DevqP-B4-zjrk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443523500</pqid></control><display><type>article</type><title>Equine uridine diphospho-glucuronosyltransferase 1A1, 2A1, 2B4, 2B31: cDNA cloning, expression and initial characterization of morphine metabolism</title><source>Alma/SFX Local Collection</source><creator>Hamamoto-Hardman, Briana D. ; Baden, Russell W. ; McKemie, Dan S. ; Knych, Heather K.</creator><creatorcontrib>Hamamoto-Hardman, Briana D. ; Baden, Russell W. ; McKemie, Dan S. ; Knych, Heather K.</creatorcontrib><description>Uridine diphospho-glucuronosyltransferases (UGTs) are membrane-bound enzymes that catalyze the conjugation of glucuronic acid onto a diverse set of xenobiotics. Horses efficiently and extensively glucuronidate a number of xenobiotics, including opioids, making UGTs an important group of drug-metabolizing enzymes for the clearance of drugs. Recombinant enzymes have allowed researchers to characterize the metabolism of a variety of drugs. The primary objective was to clone, express and characterize equine UGTs using drugs characterized as UGT substrates in other species. A secondary objective was to characterize the in vitro metabolism of morphine in horses.
In vitro drug metabolism study using liver microsomes and recombinant enzyme systems.
Liver microsomes and RNA from tissue collected from two Thoroughbred mares euthanized for other reasons.
Based on homology to the human UGT2B7, four equine UGT variants were expressed: UGT1A1, UGT2A1, UGT2B31 and UGT2B4. cDNA sequences were cloned and resulting protein expressed in a baculovirus expression system. Functionality of the enzymes was assessed using 4-methylumbelliferone, testosterone, diclofenac and ketoprofen. Recombinant enzyme, control cells, equine liver microsomes and human UGT2B7 supersomes were then incubated with morphine. Concentrations of metabolites were measured using liquid chromatography–tandem mass spectrometry and enzyme kinetics determined.
4-Methylumbelliferone was glucuronidated by all expressed equine UGTs. Testosterone glucuronide was not produced by any of the expressed enzymes, and diclofenac glucuronide and ketoprofen glucuronide were produced by UG2A1 and UGT1A1, respectively. UGT2B31 metabolized morphine to morphine-3-glucuronide and low concentrations of morphine-6-glucuronide.
This is the first successful expression of functional recombinant equine UGTs. UGT2B31 contributes to the glucuronidation of morphine; however, it is probably not the main metabolizing enzyme. These results warrant further investigation of equine UGTs, including expression of additional enzymes and further characterization of UGT2B31 as a contributor to morphine metabolism.</description><identifier>ISSN: 1467-2987</identifier><identifier>EISSN: 1467-2995</identifier><identifier>DOI: 10.1016/j.vaa.2020.07.033</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>drug ; equine ; glucuronide ; metabolism ; morphine ; uridine diphospho-glucuronosyltransferase</subject><ispartof>Veterinary anaesthesia and analgesia, 2020-11, Vol.47 (6), p.763-772</ispartof><rights>2020 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-48a6942f878e0fba5c8714647bb7b7cfe1993bca0d8e1761f6d1f907d4e2d88b3</citedby><cites>FETCH-LOGICAL-c330t-48a6942f878e0fba5c8714647bb7b7cfe1993bca0d8e1761f6d1f907d4e2d88b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hamamoto-Hardman, Briana D.</creatorcontrib><creatorcontrib>Baden, Russell W.</creatorcontrib><creatorcontrib>McKemie, Dan S.</creatorcontrib><creatorcontrib>Knych, Heather K.</creatorcontrib><title>Equine uridine diphospho-glucuronosyltransferase 1A1, 2A1, 2B4, 2B31: cDNA cloning, expression and initial characterization of morphine metabolism</title><title>Veterinary anaesthesia and analgesia</title><description>Uridine diphospho-glucuronosyltransferases (UGTs) are membrane-bound enzymes that catalyze the conjugation of glucuronic acid onto a diverse set of xenobiotics. Horses efficiently and extensively glucuronidate a number of xenobiotics, including opioids, making UGTs an important group of drug-metabolizing enzymes for the clearance of drugs. Recombinant enzymes have allowed researchers to characterize the metabolism of a variety of drugs. The primary objective was to clone, express and characterize equine UGTs using drugs characterized as UGT substrates in other species. A secondary objective was to characterize the in vitro metabolism of morphine in horses.
In vitro drug metabolism study using liver microsomes and recombinant enzyme systems.
Liver microsomes and RNA from tissue collected from two Thoroughbred mares euthanized for other reasons.
Based on homology to the human UGT2B7, four equine UGT variants were expressed: UGT1A1, UGT2A1, UGT2B31 and UGT2B4. cDNA sequences were cloned and resulting protein expressed in a baculovirus expression system. Functionality of the enzymes was assessed using 4-methylumbelliferone, testosterone, diclofenac and ketoprofen. Recombinant enzyme, control cells, equine liver microsomes and human UGT2B7 supersomes were then incubated with morphine. Concentrations of metabolites were measured using liquid chromatography–tandem mass spectrometry and enzyme kinetics determined.
4-Methylumbelliferone was glucuronidated by all expressed equine UGTs. Testosterone glucuronide was not produced by any of the expressed enzymes, and diclofenac glucuronide and ketoprofen glucuronide were produced by UG2A1 and UGT1A1, respectively. UGT2B31 metabolized morphine to morphine-3-glucuronide and low concentrations of morphine-6-glucuronide.
This is the first successful expression of functional recombinant equine UGTs. UGT2B31 contributes to the glucuronidation of morphine; however, it is probably not the main metabolizing enzyme. These results warrant further investigation of equine UGTs, including expression of additional enzymes and further characterization of UGT2B31 as a contributor to morphine metabolism.</description><subject>drug</subject><subject>equine</subject><subject>glucuronide</subject><subject>metabolism</subject><subject>morphine</subject><subject>uridine diphospho-glucuronosyltransferase</subject><issn>1467-2987</issn><issn>1467-2995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9ULtu3DAQFIIYiHPOB6RjmeIkL0VJlJLqbJ8fgJE0SU1Q5NLHg0TqSMmw_Rn54kg5w6WLnV1gZ3YxkyRfKWQUaHW-zx6lzHLIIQOeAWMfklNaVDzNm6b8-DbX_FPyOcY9AOVNCafJ3-1hsg7JFKxeurbDzse50oduUlPwzsfnbgzSRYNBRiR0Q9ck_w8XxQKMfifq6ueGqM476x7WBJ-GgDFa74h0mlhnRys7onYySDVisC9yXJbekN6HYbc87nGUre9s7M-SEyO7iF9e-yr5c739fXmb3v-6ubvc3KeKMRjTopZVU-Sm5jWCaWWpaj67LHjb8pYrg7RpWKsk6Bopr6ipNDUNcF1gruu6Zavk2_HuEPxhwjiK3kaFXScd-imKvChYmbMSYKbSI1UFH2NAI4ZgexmeBQWx5C_2Ys5fLPkL4GLOf9b8OGpw9vBoMYioLDqF2gZUo9DevqP-B4-zjrk</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Hamamoto-Hardman, Briana D.</creator><creator>Baden, Russell W.</creator><creator>McKemie, Dan S.</creator><creator>Knych, Heather K.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202011</creationdate><title>Equine uridine diphospho-glucuronosyltransferase 1A1, 2A1, 2B4, 2B31: cDNA cloning, expression and initial characterization of morphine metabolism</title><author>Hamamoto-Hardman, Briana D. ; Baden, Russell W. ; McKemie, Dan S. ; Knych, Heather K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-48a6942f878e0fba5c8714647bb7b7cfe1993bca0d8e1761f6d1f907d4e2d88b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>drug</topic><topic>equine</topic><topic>glucuronide</topic><topic>metabolism</topic><topic>morphine</topic><topic>uridine diphospho-glucuronosyltransferase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamamoto-Hardman, Briana D.</creatorcontrib><creatorcontrib>Baden, Russell W.</creatorcontrib><creatorcontrib>McKemie, Dan S.</creatorcontrib><creatorcontrib>Knych, Heather K.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Veterinary anaesthesia and analgesia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamamoto-Hardman, Briana D.</au><au>Baden, Russell W.</au><au>McKemie, Dan S.</au><au>Knych, Heather K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equine uridine diphospho-glucuronosyltransferase 1A1, 2A1, 2B4, 2B31: cDNA cloning, expression and initial characterization of morphine metabolism</atitle><jtitle>Veterinary anaesthesia and analgesia</jtitle><date>2020-11</date><risdate>2020</risdate><volume>47</volume><issue>6</issue><spage>763</spage><epage>772</epage><pages>763-772</pages><issn>1467-2987</issn><eissn>1467-2995</eissn><abstract>Uridine diphospho-glucuronosyltransferases (UGTs) are membrane-bound enzymes that catalyze the conjugation of glucuronic acid onto a diverse set of xenobiotics. Horses efficiently and extensively glucuronidate a number of xenobiotics, including opioids, making UGTs an important group of drug-metabolizing enzymes for the clearance of drugs. Recombinant enzymes have allowed researchers to characterize the metabolism of a variety of drugs. The primary objective was to clone, express and characterize equine UGTs using drugs characterized as UGT substrates in other species. A secondary objective was to characterize the in vitro metabolism of morphine in horses.
In vitro drug metabolism study using liver microsomes and recombinant enzyme systems.
Liver microsomes and RNA from tissue collected from two Thoroughbred mares euthanized for other reasons.
Based on homology to the human UGT2B7, four equine UGT variants were expressed: UGT1A1, UGT2A1, UGT2B31 and UGT2B4. cDNA sequences were cloned and resulting protein expressed in a baculovirus expression system. Functionality of the enzymes was assessed using 4-methylumbelliferone, testosterone, diclofenac and ketoprofen. Recombinant enzyme, control cells, equine liver microsomes and human UGT2B7 supersomes were then incubated with morphine. Concentrations of metabolites were measured using liquid chromatography–tandem mass spectrometry and enzyme kinetics determined.
4-Methylumbelliferone was glucuronidated by all expressed equine UGTs. Testosterone glucuronide was not produced by any of the expressed enzymes, and diclofenac glucuronide and ketoprofen glucuronide were produced by UG2A1 and UGT1A1, respectively. UGT2B31 metabolized morphine to morphine-3-glucuronide and low concentrations of morphine-6-glucuronide.
This is the first successful expression of functional recombinant equine UGTs. UGT2B31 contributes to the glucuronidation of morphine; however, it is probably not the main metabolizing enzyme. These results warrant further investigation of equine UGTs, including expression of additional enzymes and further characterization of UGT2B31 as a contributor to morphine metabolism.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.vaa.2020.07.033</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-2987 |
ispartof | Veterinary anaesthesia and analgesia, 2020-11, Vol.47 (6), p.763-772 |
issn | 1467-2987 1467-2995 |
language | eng |
recordid | cdi_proquest_miscellaneous_2443523500 |
source | Alma/SFX Local Collection |
subjects | drug equine glucuronide metabolism morphine uridine diphospho-glucuronosyltransferase |
title | Equine uridine diphospho-glucuronosyltransferase 1A1, 2A1, 2B4, 2B31: cDNA cloning, expression and initial characterization of morphine metabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A15%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equine%20uridine%20diphospho-glucuronosyltransferase%201A1,%202A1,%202B4,%202B31:%20cDNA%20cloning,%20expression%20and%20initial%20characterization%20of%20morphine%20metabolism&rft.jtitle=Veterinary%20anaesthesia%20and%20analgesia&rft.au=Hamamoto-Hardman,%20Briana%20D.&rft.date=2020-11&rft.volume=47&rft.issue=6&rft.spage=763&rft.epage=772&rft.pages=763-772&rft.issn=1467-2987&rft.eissn=1467-2995&rft_id=info:doi/10.1016/j.vaa.2020.07.033&rft_dat=%3Cproquest_cross%3E2443523500%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443523500&rft_id=info:pmid/&rft_els_id=S1467298720301641&rfr_iscdi=true |