Digital Pathology Platform for Respiratory Tract Infection Diagnosis via Multiplex Single-Particle Detections
The variability of bioparticles remains a key barrier to realizing the competent potential of nanoscale detection into a digital diagnosis of an extraneous object that causes an infectious disease. Here, we report label-free virus identification based on machine-learning classification. Single virus...
Gespeichert in:
Veröffentlicht in: | ACS sensors 2020-11, Vol.5 (11), p.3398-3403 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3403 |
---|---|
container_issue | 11 |
container_start_page | 3398 |
container_title | ACS sensors |
container_volume | 5 |
creator | Arima, Akihide Tsutsui, Makusu Yoshida, Takeshi Tatematsu, Kenji Yamazaki, Tomoko Yokota, Kazumichi Kuroda, Shun’ichi Washio, Takashi Baba, Yoshinobu Kawai, Tomoji |
description | The variability of bioparticles remains a key barrier to realizing the competent potential of nanoscale detection into a digital diagnosis of an extraneous object that causes an infectious disease. Here, we report label-free virus identification based on machine-learning classification. Single virus particles were detected using nanopores, and resistive-pulse waveforms were analyzed multilaterally using artificial intelligence. In the discrimination, over 99% accuracy for five different virus species was demonstrated. This advance is accessed through the classification of virus-derived ionic current signal patterns reflecting their intrinsic physical properties in a high-dimensional feature space. Moreover, consideration of viral similarity based on the accuracies indicates the contributing factors in the recognitions. The present findings offer the prospect of a novel surveillance system applicable to detection of multiple viruses including new strains. |
doi_str_mv | 10.1021/acssensors.0c01564 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2443522778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2443522778</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-d454e07c88a3ecf4539e1ee80098e183e337d7ce2e5d39af8be00763410645db3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0Eoqj0B1ggL9mkOLaTOEvU8qhURAVlHbnOpLhy4mI7iP49qVIeKzYzszj3SnMQuojJOCY0vpbKe2i8dX5MFImTlB-hM8qyPGJpzo__3AM08n5DyB6iiSCnaMBozhhN2Bmqp3qtgzR4IcObNXa9wwsjQ2VdjbuBn8FvtZPBuh1eOqkCnjUVqKBtg6darhvrtccfWuLH1gS9NfCJX3SzNhAtpAtaGcBTCH3Cn6OTShoPo8Meote72-XkIZo_3c8mN_NIciJCVPKEA8mUEJKBqnjCcogBBCG5gFgwYCwrMwUUkpLlshIrICRLGY9JypNyxYboqu_dOvvegg9Frb0CY2QDtvUF5ZwllGaZ6FDao8pZ7x1UxdbpWrpdEZNib7r4NV0cTHehy0N_u6qh_Il8e-2AcQ904WJjW9d07_7X-AVyqY3q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443522778</pqid></control><display><type>article</type><title>Digital Pathology Platform for Respiratory Tract Infection Diagnosis via Multiplex Single-Particle Detections</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Arima, Akihide ; Tsutsui, Makusu ; Yoshida, Takeshi ; Tatematsu, Kenji ; Yamazaki, Tomoko ; Yokota, Kazumichi ; Kuroda, Shun’ichi ; Washio, Takashi ; Baba, Yoshinobu ; Kawai, Tomoji</creator><creatorcontrib>Arima, Akihide ; Tsutsui, Makusu ; Yoshida, Takeshi ; Tatematsu, Kenji ; Yamazaki, Tomoko ; Yokota, Kazumichi ; Kuroda, Shun’ichi ; Washio, Takashi ; Baba, Yoshinobu ; Kawai, Tomoji</creatorcontrib><description>The variability of bioparticles remains a key barrier to realizing the competent potential of nanoscale detection into a digital diagnosis of an extraneous object that causes an infectious disease. Here, we report label-free virus identification based on machine-learning classification. Single virus particles were detected using nanopores, and resistive-pulse waveforms were analyzed multilaterally using artificial intelligence. In the discrimination, over 99% accuracy for five different virus species was demonstrated. This advance is accessed through the classification of virus-derived ionic current signal patterns reflecting their intrinsic physical properties in a high-dimensional feature space. Moreover, consideration of viral similarity based on the accuracies indicates the contributing factors in the recognitions. The present findings offer the prospect of a novel surveillance system applicable to detection of multiple viruses including new strains.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.0c01564</identifier><identifier>PMID: 32933253</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Artificial Intelligence ; Humans ; Ion Transport ; Nanopores ; Respiratory Tract Infections - diagnosis ; Virion</subject><ispartof>ACS sensors, 2020-11, Vol.5 (11), p.3398-3403</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-d454e07c88a3ecf4539e1ee80098e183e337d7ce2e5d39af8be00763410645db3</citedby><cites>FETCH-LOGICAL-a408t-d454e07c88a3ecf4539e1ee80098e183e337d7ce2e5d39af8be00763410645db3</cites><orcidid>0000-0002-4552-1163 ; 0000-0002-1914-5686 ; 0000-0002-5432-7274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssensors.0c01564$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssensors.0c01564$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32933253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arima, Akihide</creatorcontrib><creatorcontrib>Tsutsui, Makusu</creatorcontrib><creatorcontrib>Yoshida, Takeshi</creatorcontrib><creatorcontrib>Tatematsu, Kenji</creatorcontrib><creatorcontrib>Yamazaki, Tomoko</creatorcontrib><creatorcontrib>Yokota, Kazumichi</creatorcontrib><creatorcontrib>Kuroda, Shun’ichi</creatorcontrib><creatorcontrib>Washio, Takashi</creatorcontrib><creatorcontrib>Baba, Yoshinobu</creatorcontrib><creatorcontrib>Kawai, Tomoji</creatorcontrib><title>Digital Pathology Platform for Respiratory Tract Infection Diagnosis via Multiplex Single-Particle Detections</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>The variability of bioparticles remains a key barrier to realizing the competent potential of nanoscale detection into a digital diagnosis of an extraneous object that causes an infectious disease. Here, we report label-free virus identification based on machine-learning classification. Single virus particles were detected using nanopores, and resistive-pulse waveforms were analyzed multilaterally using artificial intelligence. In the discrimination, over 99% accuracy for five different virus species was demonstrated. This advance is accessed through the classification of virus-derived ionic current signal patterns reflecting their intrinsic physical properties in a high-dimensional feature space. Moreover, consideration of viral similarity based on the accuracies indicates the contributing factors in the recognitions. The present findings offer the prospect of a novel surveillance system applicable to detection of multiple viruses including new strains.</description><subject>Artificial Intelligence</subject><subject>Humans</subject><subject>Ion Transport</subject><subject>Nanopores</subject><subject>Respiratory Tract Infections - diagnosis</subject><subject>Virion</subject><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0Eoqj0B1ggL9mkOLaTOEvU8qhURAVlHbnOpLhy4mI7iP49qVIeKzYzszj3SnMQuojJOCY0vpbKe2i8dX5MFImTlB-hM8qyPGJpzo__3AM08n5DyB6iiSCnaMBozhhN2Bmqp3qtgzR4IcObNXa9wwsjQ2VdjbuBn8FvtZPBuh1eOqkCnjUVqKBtg6darhvrtccfWuLH1gS9NfCJX3SzNhAtpAtaGcBTCH3Cn6OTShoPo8Meote72-XkIZo_3c8mN_NIciJCVPKEA8mUEJKBqnjCcogBBCG5gFgwYCwrMwUUkpLlshIrICRLGY9JypNyxYboqu_dOvvegg9Frb0CY2QDtvUF5ZwllGaZ6FDao8pZ7x1UxdbpWrpdEZNib7r4NV0cTHehy0N_u6qh_Il8e-2AcQ904WJjW9d07_7X-AVyqY3q</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Arima, Akihide</creator><creator>Tsutsui, Makusu</creator><creator>Yoshida, Takeshi</creator><creator>Tatematsu, Kenji</creator><creator>Yamazaki, Tomoko</creator><creator>Yokota, Kazumichi</creator><creator>Kuroda, Shun’ichi</creator><creator>Washio, Takashi</creator><creator>Baba, Yoshinobu</creator><creator>Kawai, Tomoji</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4552-1163</orcidid><orcidid>https://orcid.org/0000-0002-1914-5686</orcidid><orcidid>https://orcid.org/0000-0002-5432-7274</orcidid></search><sort><creationdate>20201125</creationdate><title>Digital Pathology Platform for Respiratory Tract Infection Diagnosis via Multiplex Single-Particle Detections</title><author>Arima, Akihide ; Tsutsui, Makusu ; Yoshida, Takeshi ; Tatematsu, Kenji ; Yamazaki, Tomoko ; Yokota, Kazumichi ; Kuroda, Shun’ichi ; Washio, Takashi ; Baba, Yoshinobu ; Kawai, Tomoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-d454e07c88a3ecf4539e1ee80098e183e337d7ce2e5d39af8be00763410645db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Humans</topic><topic>Ion Transport</topic><topic>Nanopores</topic><topic>Respiratory Tract Infections - diagnosis</topic><topic>Virion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arima, Akihide</creatorcontrib><creatorcontrib>Tsutsui, Makusu</creatorcontrib><creatorcontrib>Yoshida, Takeshi</creatorcontrib><creatorcontrib>Tatematsu, Kenji</creatorcontrib><creatorcontrib>Yamazaki, Tomoko</creatorcontrib><creatorcontrib>Yokota, Kazumichi</creatorcontrib><creatorcontrib>Kuroda, Shun’ichi</creatorcontrib><creatorcontrib>Washio, Takashi</creatorcontrib><creatorcontrib>Baba, Yoshinobu</creatorcontrib><creatorcontrib>Kawai, Tomoji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arima, Akihide</au><au>Tsutsui, Makusu</au><au>Yoshida, Takeshi</au><au>Tatematsu, Kenji</au><au>Yamazaki, Tomoko</au><au>Yokota, Kazumichi</au><au>Kuroda, Shun’ichi</au><au>Washio, Takashi</au><au>Baba, Yoshinobu</au><au>Kawai, Tomoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital Pathology Platform for Respiratory Tract Infection Diagnosis via Multiplex Single-Particle Detections</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2020-11-25</date><risdate>2020</risdate><volume>5</volume><issue>11</issue><spage>3398</spage><epage>3403</epage><pages>3398-3403</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>The variability of bioparticles remains a key barrier to realizing the competent potential of nanoscale detection into a digital diagnosis of an extraneous object that causes an infectious disease. Here, we report label-free virus identification based on machine-learning classification. Single virus particles were detected using nanopores, and resistive-pulse waveforms were analyzed multilaterally using artificial intelligence. In the discrimination, over 99% accuracy for five different virus species was demonstrated. This advance is accessed through the classification of virus-derived ionic current signal patterns reflecting their intrinsic physical properties in a high-dimensional feature space. Moreover, consideration of viral similarity based on the accuracies indicates the contributing factors in the recognitions. The present findings offer the prospect of a novel surveillance system applicable to detection of multiple viruses including new strains.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32933253</pmid><doi>10.1021/acssensors.0c01564</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4552-1163</orcidid><orcidid>https://orcid.org/0000-0002-1914-5686</orcidid><orcidid>https://orcid.org/0000-0002-5432-7274</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-3694 |
ispartof | ACS sensors, 2020-11, Vol.5 (11), p.3398-3403 |
issn | 2379-3694 2379-3694 |
language | eng |
recordid | cdi_proquest_miscellaneous_2443522778 |
source | MEDLINE; American Chemical Society Journals |
subjects | Artificial Intelligence Humans Ion Transport Nanopores Respiratory Tract Infections - diagnosis Virion |
title | Digital Pathology Platform for Respiratory Tract Infection Diagnosis via Multiplex Single-Particle Detections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20Pathology%20Platform%20for%20Respiratory%20Tract%20Infection%20Diagnosis%20via%20Multiplex%20Single-Particle%20Detections&rft.jtitle=ACS%20sensors&rft.au=Arima,%20Akihide&rft.date=2020-11-25&rft.volume=5&rft.issue=11&rft.spage=3398&rft.epage=3403&rft.pages=3398-3403&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.0c01564&rft_dat=%3Cproquest_cross%3E2443522778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443522778&rft_id=info:pmid/32933253&rfr_iscdi=true |