Exploring the landscape of model representations

The success of any physical model critically depends upon adopting an appropriate representation for the phenomenon of interest. Unfortunately, it remains generally challenging to identify the essential degrees of freedom or, equivalently, the proper order parameters for describing complex phenomena...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-09, Vol.117 (39), p.24061-24068
Hauptverfasser: Foley, Thomas T., Kidder, Katherine M., Shell, M. Scott, Noid, W. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24068
container_issue 39
container_start_page 24061
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Foley, Thomas T.
Kidder, Katherine M.
Shell, M. Scott
Noid, W. G.
description The success of any physical model critically depends upon adopting an appropriate representation for the phenomenon of interest. Unfortunately, it remains generally challenging to identify the essential degrees of freedom or, equivalently, the proper order parameters for describing complex phenomena. Here we develop a statistical physics framework for exploring and quantitatively characterizing the space of order parameters for representing physical systems. Specifically, we examine the space of low-resolution representations that correspond to particle-based coarse-grained (CG) models for a simple microscopic model of protein fluctuations. We employ Monte Carlo (MC) methods to sample this space and determine the density of states for CG representations as a function of their ability to preserve the configurational information, I, and large-scale fluctuations, Q, of the microscopic model. These two metrics are uncorrelated in high-resolution representations but become anticorrelated at lower resolutions. Moreover, our MC simulations suggest an emergent length scale for coarse-graining proteins, as well as a qualitative distinction between good and bad representations of proteins. Finally, we relate our work to recent approaches for clustering graphs and detecting communities in networks.
doi_str_mv 10.1073/pnas.2000098117
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2442848642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26969509</jstor_id><sourcerecordid>26969509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-7cb22a1c0bc48ddc4fe3ee2448915d74b648c79cb7b45895856decffe51114333</originalsourceid><addsrcrecordid>eNqNkc1rFTEUxYMo9lm7dqUMdCOUafP9sRHKo1qh0I2uQyZzp53HvGRMZmz9781j6qvtqtkkcH_3cE4OQh8IPiVYsbMxuHxKcTlGE6JeoRXBhtSSG_warTCmqtac8gP0LufNjhIav0UHjBpqMBErhC_uxyGmPtxU0y1Ugwtt9m6EKnbVNrYwVAnGBBnC5KY-hvwevenckOHo4T5EP79e_Fhf1lfX376vz69qzzmbauUbSh3xuPFct63nHTAAyrk2RLSKN5Jrr4xvVMOFLraEbMF3HQhCCGeMHaIvi-44N1tofTGQ3GDH1G9d-mOj6-3TSehv7U38bZVgTCtVBD4_CKT4a4Y82W2fPQwlIsQ52-KFaq4lpwU9foZu4pxCiVcowSihSopCnS2UTzHnBN3eDMF214bdtWEf2ygbn_7PsOf_fX8B9ALcQRO77HsIHvZY0RFKyuKwvIhY90sF6ziHqayevHy10B8XepOnmPYYlUYagQ37CyVZsEM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453212765</pqid></control><display><type>article</type><title>Exploring the landscape of model representations</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Foley, Thomas T. ; Kidder, Katherine M. ; Shell, M. Scott ; Noid, W. G.</creator><creatorcontrib>Foley, Thomas T. ; Kidder, Katherine M. ; Shell, M. Scott ; Noid, W. G.</creatorcontrib><description>The success of any physical model critically depends upon adopting an appropriate representation for the phenomenon of interest. Unfortunately, it remains generally challenging to identify the essential degrees of freedom or, equivalently, the proper order parameters for describing complex phenomena. Here we develop a statistical physics framework for exploring and quantitatively characterizing the space of order parameters for representing physical systems. Specifically, we examine the space of low-resolution representations that correspond to particle-based coarse-grained (CG) models for a simple microscopic model of protein fluctuations. We employ Monte Carlo (MC) methods to sample this space and determine the density of states for CG representations as a function of their ability to preserve the configurational information, I, and large-scale fluctuations, Q, of the microscopic model. These two metrics are uncorrelated in high-resolution representations but become anticorrelated at lower resolutions. Moreover, our MC simulations suggest an emergent length scale for coarse-graining proteins, as well as a qualitative distinction between good and bad representations of proteins. Finally, we relate our work to recent approaches for clustering graphs and detecting communities in networks.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2000098117</identifier><identifier>PMID: 32929015</identifier><language>eng</language><publisher>WASHINGTON: National Academy of Sciences</publisher><subject>Biological Sciences ; Clustering ; Fluctuations ; Granulation ; Mathematical models ; Models, Chemical ; Monte Carlo Method ; Monte Carlo simulation ; Multidisciplinary Sciences ; Neural Networks, Computer ; Order parameters ; Phase Transition ; Physical Sciences ; Protein Conformation ; Proteins ; Representations ; Science &amp; Technology ; Science &amp; Technology - Other Topics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-09, Vol.117 (39), p.24061-24068</ispartof><rights>Copyright National Academy of Sciences Sep 29, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>34</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000576664200015</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c443t-7cb22a1c0bc48ddc4fe3ee2448915d74b648c79cb7b45895856decffe51114333</citedby><cites>FETCH-LOGICAL-c443t-7cb22a1c0bc48ddc4fe3ee2448915d74b648c79cb7b45895856decffe51114333</cites><orcidid>0000-0002-6878-5292 ; 0000-0002-6430-4746 ; 0000-0002-0439-1534 ; 0000-0001-9675-8489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26969509$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26969509$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27929,27930,28253,53796,53798,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32929015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Foley, Thomas T.</creatorcontrib><creatorcontrib>Kidder, Katherine M.</creatorcontrib><creatorcontrib>Shell, M. Scott</creatorcontrib><creatorcontrib>Noid, W. G.</creatorcontrib><title>Exploring the landscape of model representations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>P NATL ACAD SCI USA</addtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The success of any physical model critically depends upon adopting an appropriate representation for the phenomenon of interest. Unfortunately, it remains generally challenging to identify the essential degrees of freedom or, equivalently, the proper order parameters for describing complex phenomena. Here we develop a statistical physics framework for exploring and quantitatively characterizing the space of order parameters for representing physical systems. Specifically, we examine the space of low-resolution representations that correspond to particle-based coarse-grained (CG) models for a simple microscopic model of protein fluctuations. We employ Monte Carlo (MC) methods to sample this space and determine the density of states for CG representations as a function of their ability to preserve the configurational information, I, and large-scale fluctuations, Q, of the microscopic model. These two metrics are uncorrelated in high-resolution representations but become anticorrelated at lower resolutions. Moreover, our MC simulations suggest an emergent length scale for coarse-graining proteins, as well as a qualitative distinction between good and bad representations of proteins. Finally, we relate our work to recent approaches for clustering graphs and detecting communities in networks.</description><subject>Biological Sciences</subject><subject>Clustering</subject><subject>Fluctuations</subject><subject>Granulation</subject><subject>Mathematical models</subject><subject>Models, Chemical</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Multidisciplinary Sciences</subject><subject>Neural Networks, Computer</subject><subject>Order parameters</subject><subject>Phase Transition</subject><subject>Physical Sciences</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Representations</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1rFTEUxYMo9lm7dqUMdCOUafP9sRHKo1qh0I2uQyZzp53HvGRMZmz9781j6qvtqtkkcH_3cE4OQh8IPiVYsbMxuHxKcTlGE6JeoRXBhtSSG_warTCmqtac8gP0LufNjhIav0UHjBpqMBErhC_uxyGmPtxU0y1Ugwtt9m6EKnbVNrYwVAnGBBnC5KY-hvwevenckOHo4T5EP79e_Fhf1lfX376vz69qzzmbauUbSh3xuPFct63nHTAAyrk2RLSKN5Jrr4xvVMOFLraEbMF3HQhCCGeMHaIvi-44N1tofTGQ3GDH1G9d-mOj6-3TSehv7U38bZVgTCtVBD4_CKT4a4Y82W2fPQwlIsQ52-KFaq4lpwU9foZu4pxCiVcowSihSopCnS2UTzHnBN3eDMF214bdtWEf2ygbn_7PsOf_fX8B9ALcQRO77HsIHvZY0RFKyuKwvIhY90sF6ziHqayevHy10B8XepOnmPYYlUYagQ37CyVZsEM</recordid><startdate>20200929</startdate><enddate>20200929</enddate><creator>Foley, Thomas T.</creator><creator>Kidder, Katherine M.</creator><creator>Shell, M. Scott</creator><creator>Noid, W. G.</creator><general>National Academy of Sciences</general><general>Natl Acad Sciences</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6878-5292</orcidid><orcidid>https://orcid.org/0000-0002-6430-4746</orcidid><orcidid>https://orcid.org/0000-0002-0439-1534</orcidid><orcidid>https://orcid.org/0000-0001-9675-8489</orcidid></search><sort><creationdate>20200929</creationdate><title>Exploring the landscape of model representations</title><author>Foley, Thomas T. ; Kidder, Katherine M. ; Shell, M. Scott ; Noid, W. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-7cb22a1c0bc48ddc4fe3ee2448915d74b648c79cb7b45895856decffe51114333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological Sciences</topic><topic>Clustering</topic><topic>Fluctuations</topic><topic>Granulation</topic><topic>Mathematical models</topic><topic>Models, Chemical</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Multidisciplinary Sciences</topic><topic>Neural Networks, Computer</topic><topic>Order parameters</topic><topic>Phase Transition</topic><topic>Physical Sciences</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Representations</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foley, Thomas T.</creatorcontrib><creatorcontrib>Kidder, Katherine M.</creatorcontrib><creatorcontrib>Shell, M. Scott</creatorcontrib><creatorcontrib>Noid, W. G.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foley, Thomas T.</au><au>Kidder, Katherine M.</au><au>Shell, M. Scott</au><au>Noid, W. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the landscape of model representations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><stitle>P NATL ACAD SCI USA</stitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-09-29</date><risdate>2020</risdate><volume>117</volume><issue>39</issue><spage>24061</spage><epage>24068</epage><pages>24061-24068</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The success of any physical model critically depends upon adopting an appropriate representation for the phenomenon of interest. Unfortunately, it remains generally challenging to identify the essential degrees of freedom or, equivalently, the proper order parameters for describing complex phenomena. Here we develop a statistical physics framework for exploring and quantitatively characterizing the space of order parameters for representing physical systems. Specifically, we examine the space of low-resolution representations that correspond to particle-based coarse-grained (CG) models for a simple microscopic model of protein fluctuations. We employ Monte Carlo (MC) methods to sample this space and determine the density of states for CG representations as a function of their ability to preserve the configurational information, I, and large-scale fluctuations, Q, of the microscopic model. These two metrics are uncorrelated in high-resolution representations but become anticorrelated at lower resolutions. Moreover, our MC simulations suggest an emergent length scale for coarse-graining proteins, as well as a qualitative distinction between good and bad representations of proteins. Finally, we relate our work to recent approaches for clustering graphs and detecting communities in networks.</abstract><cop>WASHINGTON</cop><pub>National Academy of Sciences</pub><pmid>32929015</pmid><doi>10.1073/pnas.2000098117</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6878-5292</orcidid><orcidid>https://orcid.org/0000-0002-6430-4746</orcidid><orcidid>https://orcid.org/0000-0002-0439-1534</orcidid><orcidid>https://orcid.org/0000-0001-9675-8489</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-09, Vol.117 (39), p.24061-24068
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_2442848642
source Jstor Complete Legacy; MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Clustering
Fluctuations
Granulation
Mathematical models
Models, Chemical
Monte Carlo Method
Monte Carlo simulation
Multidisciplinary Sciences
Neural Networks, Computer
Order parameters
Phase Transition
Physical Sciences
Protein Conformation
Proteins
Representations
Science & Technology
Science & Technology - Other Topics
title Exploring the landscape of model representations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T12%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20landscape%20of%20model%20representations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Foley,%20Thomas%20T.&rft.date=2020-09-29&rft.volume=117&rft.issue=39&rft.spage=24061&rft.epage=24068&rft.pages=24061-24068&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2000098117&rft_dat=%3Cjstor_proqu%3E26969509%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453212765&rft_id=info:pmid/32929015&rft_jstor_id=26969509&rfr_iscdi=true