Exploring the landscape of model representations
The success of any physical model critically depends upon adopting an appropriate representation for the phenomenon of interest. Unfortunately, it remains generally challenging to identify the essential degrees of freedom or, equivalently, the proper order parameters for describing complex phenomena...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-09, Vol.117 (39), p.24061-24068 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24068 |
---|---|
container_issue | 39 |
container_start_page | 24061 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Foley, Thomas T. Kidder, Katherine M. Shell, M. Scott Noid, W. G. |
description | The success of any physical model critically depends upon adopting an appropriate representation for the phenomenon of interest. Unfortunately, it remains generally challenging to identify the essential degrees of freedom or, equivalently, the proper order parameters for describing complex phenomena. Here we develop a statistical physics framework for exploring and quantitatively characterizing the space of order parameters for representing physical systems. Specifically, we examine the space of low-resolution representations that correspond to particle-based coarse-grained (CG) models for a simple microscopic model of protein fluctuations. We employ Monte Carlo (MC) methods to sample this space and determine the density of states for CG representations as a function of their ability to preserve the configurational information, I, and large-scale fluctuations, Q, of the microscopic model. These two metrics are uncorrelated in high-resolution representations but become anticorrelated at lower resolutions. Moreover, our MC simulations suggest an emergent length scale for coarse-graining proteins, as well as a qualitative distinction between good and bad representations of proteins. Finally, we relate our work to recent approaches for clustering graphs and detecting communities in networks. |
doi_str_mv | 10.1073/pnas.2000098117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2442848642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26969509</jstor_id><sourcerecordid>26969509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-7cb22a1c0bc48ddc4fe3ee2448915d74b648c79cb7b45895856decffe51114333</originalsourceid><addsrcrecordid>eNqNkc1rFTEUxYMo9lm7dqUMdCOUafP9sRHKo1qh0I2uQyZzp53HvGRMZmz9781j6qvtqtkkcH_3cE4OQh8IPiVYsbMxuHxKcTlGE6JeoRXBhtSSG_warTCmqtac8gP0LufNjhIav0UHjBpqMBErhC_uxyGmPtxU0y1Ugwtt9m6EKnbVNrYwVAnGBBnC5KY-hvwevenckOHo4T5EP79e_Fhf1lfX376vz69qzzmbauUbSh3xuPFct63nHTAAyrk2RLSKN5Jrr4xvVMOFLraEbMF3HQhCCGeMHaIvi-44N1tofTGQ3GDH1G9d-mOj6-3TSehv7U38bZVgTCtVBD4_CKT4a4Y82W2fPQwlIsQ52-KFaq4lpwU9foZu4pxCiVcowSihSopCnS2UTzHnBN3eDMF214bdtWEf2ygbn_7PsOf_fX8B9ALcQRO77HsIHvZY0RFKyuKwvIhY90sF6ziHqayevHy10B8XepOnmPYYlUYagQ37CyVZsEM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453212765</pqid></control><display><type>article</type><title>Exploring the landscape of model representations</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Foley, Thomas T. ; Kidder, Katherine M. ; Shell, M. Scott ; Noid, W. G.</creator><creatorcontrib>Foley, Thomas T. ; Kidder, Katherine M. ; Shell, M. Scott ; Noid, W. G.</creatorcontrib><description>The success of any physical model critically depends upon adopting an appropriate representation for the phenomenon of interest. Unfortunately, it remains generally challenging to identify the essential degrees of freedom or, equivalently, the proper order parameters for describing complex phenomena. Here we develop a statistical physics framework for exploring and quantitatively characterizing the space of order parameters for representing physical systems. Specifically, we examine the space of low-resolution representations that correspond to particle-based coarse-grained (CG) models for a simple microscopic model of protein fluctuations. We employ Monte Carlo (MC) methods to sample this space and determine the density of states for CG representations as a function of their ability to preserve the configurational information, I, and large-scale fluctuations, Q, of the microscopic model. These two metrics are uncorrelated in high-resolution representations but become anticorrelated at lower resolutions. Moreover, our MC simulations suggest an emergent length scale for coarse-graining proteins, as well as a qualitative distinction between good and bad representations of proteins. Finally, we relate our work to recent approaches for clustering graphs and detecting communities in networks.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2000098117</identifier><identifier>PMID: 32929015</identifier><language>eng</language><publisher>WASHINGTON: National Academy of Sciences</publisher><subject>Biological Sciences ; Clustering ; Fluctuations ; Granulation ; Mathematical models ; Models, Chemical ; Monte Carlo Method ; Monte Carlo simulation ; Multidisciplinary Sciences ; Neural Networks, Computer ; Order parameters ; Phase Transition ; Physical Sciences ; Protein Conformation ; Proteins ; Representations ; Science & Technology ; Science & Technology - Other Topics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-09, Vol.117 (39), p.24061-24068</ispartof><rights>Copyright National Academy of Sciences Sep 29, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>34</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000576664200015</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c443t-7cb22a1c0bc48ddc4fe3ee2448915d74b648c79cb7b45895856decffe51114333</citedby><cites>FETCH-LOGICAL-c443t-7cb22a1c0bc48ddc4fe3ee2448915d74b648c79cb7b45895856decffe51114333</cites><orcidid>0000-0002-6878-5292 ; 0000-0002-6430-4746 ; 0000-0002-0439-1534 ; 0000-0001-9675-8489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26969509$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26969509$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27929,27930,28253,53796,53798,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32929015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Foley, Thomas T.</creatorcontrib><creatorcontrib>Kidder, Katherine M.</creatorcontrib><creatorcontrib>Shell, M. Scott</creatorcontrib><creatorcontrib>Noid, W. G.</creatorcontrib><title>Exploring the landscape of model representations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>P NATL ACAD SCI USA</addtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The success of any physical model critically depends upon adopting an appropriate representation for the phenomenon of interest. Unfortunately, it remains generally challenging to identify the essential degrees of freedom or, equivalently, the proper order parameters for describing complex phenomena. Here we develop a statistical physics framework for exploring and quantitatively characterizing the space of order parameters for representing physical systems. Specifically, we examine the space of low-resolution representations that correspond to particle-based coarse-grained (CG) models for a simple microscopic model of protein fluctuations. We employ Monte Carlo (MC) methods to sample this space and determine the density of states for CG representations as a function of their ability to preserve the configurational information, I, and large-scale fluctuations, Q, of the microscopic model. These two metrics are uncorrelated in high-resolution representations but become anticorrelated at lower resolutions. Moreover, our MC simulations suggest an emergent length scale for coarse-graining proteins, as well as a qualitative distinction between good and bad representations of proteins. Finally, we relate our work to recent approaches for clustering graphs and detecting communities in networks.</description><subject>Biological Sciences</subject><subject>Clustering</subject><subject>Fluctuations</subject><subject>Granulation</subject><subject>Mathematical models</subject><subject>Models, Chemical</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Multidisciplinary Sciences</subject><subject>Neural Networks, Computer</subject><subject>Order parameters</subject><subject>Phase Transition</subject><subject>Physical Sciences</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Representations</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1rFTEUxYMo9lm7dqUMdCOUafP9sRHKo1qh0I2uQyZzp53HvGRMZmz9781j6qvtqtkkcH_3cE4OQh8IPiVYsbMxuHxKcTlGE6JeoRXBhtSSG_warTCmqtac8gP0LufNjhIav0UHjBpqMBErhC_uxyGmPtxU0y1Ugwtt9m6EKnbVNrYwVAnGBBnC5KY-hvwevenckOHo4T5EP79e_Fhf1lfX376vz69qzzmbauUbSh3xuPFct63nHTAAyrk2RLSKN5Jrr4xvVMOFLraEbMF3HQhCCGeMHaIvi-44N1tofTGQ3GDH1G9d-mOj6-3TSehv7U38bZVgTCtVBD4_CKT4a4Y82W2fPQwlIsQ52-KFaq4lpwU9foZu4pxCiVcowSihSopCnS2UTzHnBN3eDMF214bdtWEf2ygbn_7PsOf_fX8B9ALcQRO77HsIHvZY0RFKyuKwvIhY90sF6ziHqayevHy10B8XepOnmPYYlUYagQ37CyVZsEM</recordid><startdate>20200929</startdate><enddate>20200929</enddate><creator>Foley, Thomas T.</creator><creator>Kidder, Katherine M.</creator><creator>Shell, M. Scott</creator><creator>Noid, W. G.</creator><general>National Academy of Sciences</general><general>Natl Acad Sciences</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6878-5292</orcidid><orcidid>https://orcid.org/0000-0002-6430-4746</orcidid><orcidid>https://orcid.org/0000-0002-0439-1534</orcidid><orcidid>https://orcid.org/0000-0001-9675-8489</orcidid></search><sort><creationdate>20200929</creationdate><title>Exploring the landscape of model representations</title><author>Foley, Thomas T. ; Kidder, Katherine M. ; Shell, M. Scott ; Noid, W. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-7cb22a1c0bc48ddc4fe3ee2448915d74b648c79cb7b45895856decffe51114333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological Sciences</topic><topic>Clustering</topic><topic>Fluctuations</topic><topic>Granulation</topic><topic>Mathematical models</topic><topic>Models, Chemical</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Multidisciplinary Sciences</topic><topic>Neural Networks, Computer</topic><topic>Order parameters</topic><topic>Phase Transition</topic><topic>Physical Sciences</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Representations</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foley, Thomas T.</creatorcontrib><creatorcontrib>Kidder, Katherine M.</creatorcontrib><creatorcontrib>Shell, M. Scott</creatorcontrib><creatorcontrib>Noid, W. G.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foley, Thomas T.</au><au>Kidder, Katherine M.</au><au>Shell, M. Scott</au><au>Noid, W. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the landscape of model representations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><stitle>P NATL ACAD SCI USA</stitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-09-29</date><risdate>2020</risdate><volume>117</volume><issue>39</issue><spage>24061</spage><epage>24068</epage><pages>24061-24068</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The success of any physical model critically depends upon adopting an appropriate representation for the phenomenon of interest. Unfortunately, it remains generally challenging to identify the essential degrees of freedom or, equivalently, the proper order parameters for describing complex phenomena. Here we develop a statistical physics framework for exploring and quantitatively characterizing the space of order parameters for representing physical systems. Specifically, we examine the space of low-resolution representations that correspond to particle-based coarse-grained (CG) models for a simple microscopic model of protein fluctuations. We employ Monte Carlo (MC) methods to sample this space and determine the density of states for CG representations as a function of their ability to preserve the configurational information, I, and large-scale fluctuations, Q, of the microscopic model. These two metrics are uncorrelated in high-resolution representations but become anticorrelated at lower resolutions. Moreover, our MC simulations suggest an emergent length scale for coarse-graining proteins, as well as a qualitative distinction between good and bad representations of proteins. Finally, we relate our work to recent approaches for clustering graphs and detecting communities in networks.</abstract><cop>WASHINGTON</cop><pub>National Academy of Sciences</pub><pmid>32929015</pmid><doi>10.1073/pnas.2000098117</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6878-5292</orcidid><orcidid>https://orcid.org/0000-0002-6430-4746</orcidid><orcidid>https://orcid.org/0000-0002-0439-1534</orcidid><orcidid>https://orcid.org/0000-0001-9675-8489</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-09, Vol.117 (39), p.24061-24068 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_2442848642 |
source | Jstor Complete Legacy; MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Clustering Fluctuations Granulation Mathematical models Models, Chemical Monte Carlo Method Monte Carlo simulation Multidisciplinary Sciences Neural Networks, Computer Order parameters Phase Transition Physical Sciences Protein Conformation Proteins Representations Science & Technology Science & Technology - Other Topics |
title | Exploring the landscape of model representations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T12%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20landscape%20of%20model%20representations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Foley,%20Thomas%20T.&rft.date=2020-09-29&rft.volume=117&rft.issue=39&rft.spage=24061&rft.epage=24068&rft.pages=24061-24068&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2000098117&rft_dat=%3Cjstor_proqu%3E26969509%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453212765&rft_id=info:pmid/32929015&rft_jstor_id=26969509&rfr_iscdi=true |