Rational Design of Semiconductor‐Based Chemiresistors and their Libraries for Next‐Generation Artificial Olfaction
Artificial olfaction based on gas sensor arrays aims to substitute for, support, and surpass human olfaction. Like mammalian olfaction, a larger number of sensors and more signal processing are crucial for strengthening artificial olfaction. Due to rapid progress in computing capabilities and machin...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2020-12, Vol.32 (51), p.e2002075-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 51 |
container_start_page | e2002075 |
container_title | Advanced materials (Weinheim) |
container_volume | 32 |
creator | Jeong, Seong‐Yong Kim, Jun‐Sik Lee, Jong‐Heun |
description | Artificial olfaction based on gas sensor arrays aims to substitute for, support, and surpass human olfaction. Like mammalian olfaction, a larger number of sensors and more signal processing are crucial for strengthening artificial olfaction. Due to rapid progress in computing capabilities and machine‐learning algorithms, on‐demand high‐performance artificial olfaction that can eclipse human olfaction becomes inevitable once diverse and versatile gas sensing materials are provided. Here, rational strategies to design a myriad of different semiconductor‐based chemiresistors and to grow gas sensing libraries enough to identify a wide range of odors and gases are reviewed, discussed, and suggested. Key approaches include the use of p‐type oxide semiconductors, multinary perovskite and spinel oxides, carbon‐based materials, metal chalcogenides, their heterostructures, as well as heterocomposites as distinctive sensing materials, the utilization of bilayer sensor design, the design of robust sensing materials, and the high‐throughput screening of sensing materials. In addition, the state‐of‐the‐art and key issues in the implementation of electronic noses are discussed. Finally, a perspective on chemiresistive sensing materials for next‐generation artificial olfaction is provided.
A variety of material design strategies for the realization of next‐generation artificial olfaction are investigated. Inspired by the mammalian olfactory system, state‐of‐the‐art electronic noses will have diverse material libraries coupled with advanced signal processors that can replace and/or surpass the human olfactory system. These electronic noses are expected to be applicable to numerous on‐demand application fields. |
doi_str_mv | 10.1002/adma.202002075 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2442846977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471704656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4135-2c65182abfaeb223d8d48997f17debe94710050e46ac33ca4bc909587d74138b3</originalsourceid><addsrcrecordid>eNqFkUtPxCAUhYnR6PjYujQkbtzMCJSWshzHZzJq4mPdULhVTFsUWh87f4K_0V8i4_hI3LiCnHzncLkHoU1KRpQQtqtMo0aMsHgnIl1AA5oyOuREpotoQGSSDmXG8xW0GsIdIURmJFtGKwmTCeEJHaDHC9VZ16oa70OwNy12Fb6ExmrXml53zr-_vu2pAAZPbqPsIxSiGrBqDe5uwXo8taVX3kLAlfP4DJ676DmCFvxnNB77zlZW2_jGeV0pPRPX0VKl6gAbX-cauj48uJocD6fnRyeT8XSoOY2zM52lNGeqrBSUjCUmNzyXUlRUGChBchGXkBLgmdJJohUvtYxfz4UR0Z-XyRramefee_fQQ-iKxgYNda1acH0oGOcs55kUIqLbf9A71_u4mRklqCA8S7NIjeaU9i4ED1Vx722j_EtBSTFrpJg1Uvw0Eg1bX7F92YD5wb8riICcA0-2hpd_4orx_un4N_wDMi6aAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471704656</pqid></control><display><type>article</type><title>Rational Design of Semiconductor‐Based Chemiresistors and their Libraries for Next‐Generation Artificial Olfaction</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jeong, Seong‐Yong ; Kim, Jun‐Sik ; Lee, Jong‐Heun</creator><creatorcontrib>Jeong, Seong‐Yong ; Kim, Jun‐Sik ; Lee, Jong‐Heun</creatorcontrib><description>Artificial olfaction based on gas sensor arrays aims to substitute for, support, and surpass human olfaction. Like mammalian olfaction, a larger number of sensors and more signal processing are crucial for strengthening artificial olfaction. Due to rapid progress in computing capabilities and machine‐learning algorithms, on‐demand high‐performance artificial olfaction that can eclipse human olfaction becomes inevitable once diverse and versatile gas sensing materials are provided. Here, rational strategies to design a myriad of different semiconductor‐based chemiresistors and to grow gas sensing libraries enough to identify a wide range of odors and gases are reviewed, discussed, and suggested. Key approaches include the use of p‐type oxide semiconductors, multinary perovskite and spinel oxides, carbon‐based materials, metal chalcogenides, their heterostructures, as well as heterocomposites as distinctive sensing materials, the utilization of bilayer sensor design, the design of robust sensing materials, and the high‐throughput screening of sensing materials. In addition, the state‐of‐the‐art and key issues in the implementation of electronic noses are discussed. Finally, a perspective on chemiresistive sensing materials for next‐generation artificial olfaction is provided.
A variety of material design strategies for the realization of next‐generation artificial olfaction are investigated. Inspired by the mammalian olfactory system, state‐of‐the‐art electronic noses will have diverse material libraries coupled with advanced signal processors that can replace and/or surpass the human olfactory system. These electronic noses are expected to be applicable to numerous on‐demand application fields.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202002075</identifier><identifier>PMID: 32930431</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; artificial olfaction ; Bilayers ; chemiresistors ; Electronic Nose ; Electronic noses ; Equipment Design ; Gas sensors ; Gases ; Gases - analysis ; Gases - chemistry ; Heterostructures ; Humans ; Libraries ; Machine learning ; Materials science ; Odorants - analysis ; Odors ; oxide semiconductors ; Oxides - chemistry ; P-type semiconductors ; Perovskites ; Semiconductors ; Sensor arrays ; Signal processing ; Smell</subject><ispartof>Advanced materials (Weinheim), 2020-12, Vol.32 (51), p.e2002075-n/a</ispartof><rights>2020 The Authors. Published by Wiley‐VCH GmbH</rights><rights>2020 The Authors. Published by Wiley-VCH GmbH.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4135-2c65182abfaeb223d8d48997f17debe94710050e46ac33ca4bc909587d74138b3</citedby><cites>FETCH-LOGICAL-c4135-2c65182abfaeb223d8d48997f17debe94710050e46ac33ca4bc909587d74138b3</cites><orcidid>0000-0002-3075-3623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202002075$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202002075$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32930431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeong, Seong‐Yong</creatorcontrib><creatorcontrib>Kim, Jun‐Sik</creatorcontrib><creatorcontrib>Lee, Jong‐Heun</creatorcontrib><title>Rational Design of Semiconductor‐Based Chemiresistors and their Libraries for Next‐Generation Artificial Olfaction</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Artificial olfaction based on gas sensor arrays aims to substitute for, support, and surpass human olfaction. Like mammalian olfaction, a larger number of sensors and more signal processing are crucial for strengthening artificial olfaction. Due to rapid progress in computing capabilities and machine‐learning algorithms, on‐demand high‐performance artificial olfaction that can eclipse human olfaction becomes inevitable once diverse and versatile gas sensing materials are provided. Here, rational strategies to design a myriad of different semiconductor‐based chemiresistors and to grow gas sensing libraries enough to identify a wide range of odors and gases are reviewed, discussed, and suggested. Key approaches include the use of p‐type oxide semiconductors, multinary perovskite and spinel oxides, carbon‐based materials, metal chalcogenides, their heterostructures, as well as heterocomposites as distinctive sensing materials, the utilization of bilayer sensor design, the design of robust sensing materials, and the high‐throughput screening of sensing materials. In addition, the state‐of‐the‐art and key issues in the implementation of electronic noses are discussed. Finally, a perspective on chemiresistive sensing materials for next‐generation artificial olfaction is provided.
A variety of material design strategies for the realization of next‐generation artificial olfaction are investigated. Inspired by the mammalian olfactory system, state‐of‐the‐art electronic noses will have diverse material libraries coupled with advanced signal processors that can replace and/or surpass the human olfactory system. These electronic noses are expected to be applicable to numerous on‐demand application fields.</description><subject>Algorithms</subject><subject>artificial olfaction</subject><subject>Bilayers</subject><subject>chemiresistors</subject><subject>Electronic Nose</subject><subject>Electronic noses</subject><subject>Equipment Design</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Gases - analysis</subject><subject>Gases - chemistry</subject><subject>Heterostructures</subject><subject>Humans</subject><subject>Libraries</subject><subject>Machine learning</subject><subject>Materials science</subject><subject>Odorants - analysis</subject><subject>Odors</subject><subject>oxide semiconductors</subject><subject>Oxides - chemistry</subject><subject>P-type semiconductors</subject><subject>Perovskites</subject><subject>Semiconductors</subject><subject>Sensor arrays</subject><subject>Signal processing</subject><subject>Smell</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtPxCAUhYnR6PjYujQkbtzMCJSWshzHZzJq4mPdULhVTFsUWh87f4K_0V8i4_hI3LiCnHzncLkHoU1KRpQQtqtMo0aMsHgnIl1AA5oyOuREpotoQGSSDmXG8xW0GsIdIURmJFtGKwmTCeEJHaDHC9VZ16oa70OwNy12Fb6ExmrXml53zr-_vu2pAAZPbqPsIxSiGrBqDe5uwXo8taVX3kLAlfP4DJ676DmCFvxnNB77zlZW2_jGeV0pPRPX0VKl6gAbX-cauj48uJocD6fnRyeT8XSoOY2zM52lNGeqrBSUjCUmNzyXUlRUGChBchGXkBLgmdJJohUvtYxfz4UR0Z-XyRramefee_fQQ-iKxgYNda1acH0oGOcs55kUIqLbf9A71_u4mRklqCA8S7NIjeaU9i4ED1Vx722j_EtBSTFrpJg1Uvw0Eg1bX7F92YD5wb8riICcA0-2hpd_4orx_un4N_wDMi6aAA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Jeong, Seong‐Yong</creator><creator>Kim, Jun‐Sik</creator><creator>Lee, Jong‐Heun</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3075-3623</orcidid></search><sort><creationdate>20201201</creationdate><title>Rational Design of Semiconductor‐Based Chemiresistors and their Libraries for Next‐Generation Artificial Olfaction</title><author>Jeong, Seong‐Yong ; Kim, Jun‐Sik ; Lee, Jong‐Heun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4135-2c65182abfaeb223d8d48997f17debe94710050e46ac33ca4bc909587d74138b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>artificial olfaction</topic><topic>Bilayers</topic><topic>chemiresistors</topic><topic>Electronic Nose</topic><topic>Electronic noses</topic><topic>Equipment Design</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Gases - analysis</topic><topic>Gases - chemistry</topic><topic>Heterostructures</topic><topic>Humans</topic><topic>Libraries</topic><topic>Machine learning</topic><topic>Materials science</topic><topic>Odorants - analysis</topic><topic>Odors</topic><topic>oxide semiconductors</topic><topic>Oxides - chemistry</topic><topic>P-type semiconductors</topic><topic>Perovskites</topic><topic>Semiconductors</topic><topic>Sensor arrays</topic><topic>Signal processing</topic><topic>Smell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Seong‐Yong</creatorcontrib><creatorcontrib>Kim, Jun‐Sik</creatorcontrib><creatorcontrib>Lee, Jong‐Heun</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Seong‐Yong</au><au>Kim, Jun‐Sik</au><au>Lee, Jong‐Heun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational Design of Semiconductor‐Based Chemiresistors and their Libraries for Next‐Generation Artificial Olfaction</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>32</volume><issue>51</issue><spage>e2002075</spage><epage>n/a</epage><pages>e2002075-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Artificial olfaction based on gas sensor arrays aims to substitute for, support, and surpass human olfaction. Like mammalian olfaction, a larger number of sensors and more signal processing are crucial for strengthening artificial olfaction. Due to rapid progress in computing capabilities and machine‐learning algorithms, on‐demand high‐performance artificial olfaction that can eclipse human olfaction becomes inevitable once diverse and versatile gas sensing materials are provided. Here, rational strategies to design a myriad of different semiconductor‐based chemiresistors and to grow gas sensing libraries enough to identify a wide range of odors and gases are reviewed, discussed, and suggested. Key approaches include the use of p‐type oxide semiconductors, multinary perovskite and spinel oxides, carbon‐based materials, metal chalcogenides, their heterostructures, as well as heterocomposites as distinctive sensing materials, the utilization of bilayer sensor design, the design of robust sensing materials, and the high‐throughput screening of sensing materials. In addition, the state‐of‐the‐art and key issues in the implementation of electronic noses are discussed. Finally, a perspective on chemiresistive sensing materials for next‐generation artificial olfaction is provided.
A variety of material design strategies for the realization of next‐generation artificial olfaction are investigated. Inspired by the mammalian olfactory system, state‐of‐the‐art electronic noses will have diverse material libraries coupled with advanced signal processors that can replace and/or surpass the human olfactory system. These electronic noses are expected to be applicable to numerous on‐demand application fields.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32930431</pmid><doi>10.1002/adma.202002075</doi><tpages>47</tpages><orcidid>https://orcid.org/0000-0002-3075-3623</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2020-12, Vol.32 (51), p.e2002075-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2442846977 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms artificial olfaction Bilayers chemiresistors Electronic Nose Electronic noses Equipment Design Gas sensors Gases Gases - analysis Gases - chemistry Heterostructures Humans Libraries Machine learning Materials science Odorants - analysis Odors oxide semiconductors Oxides - chemistry P-type semiconductors Perovskites Semiconductors Sensor arrays Signal processing Smell |
title | Rational Design of Semiconductor‐Based Chemiresistors and their Libraries for Next‐Generation Artificial Olfaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20Design%20of%20Semiconductor%E2%80%90Based%20Chemiresistors%20and%20their%20Libraries%20for%20Next%E2%80%90Generation%20Artificial%20Olfaction&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Jeong,%20Seong%E2%80%90Yong&rft.date=2020-12-01&rft.volume=32&rft.issue=51&rft.spage=e2002075&rft.epage=n/a&rft.pages=e2002075-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202002075&rft_dat=%3Cproquest_cross%3E2471704656%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471704656&rft_id=info:pmid/32930431&rfr_iscdi=true |