Rational Design of Semiconductor‐Based Chemiresistors and their Libraries for Next‐Generation Artificial Olfaction

Artificial olfaction based on gas sensor arrays aims to substitute for, support, and surpass human olfaction. Like mammalian olfaction, a larger number of sensors and more signal processing are crucial for strengthening artificial olfaction. Due to rapid progress in computing capabilities and machin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-12, Vol.32 (51), p.e2002075-n/a
Hauptverfasser: Jeong, Seong‐Yong, Kim, Jun‐Sik, Lee, Jong‐Heun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 51
container_start_page e2002075
container_title Advanced materials (Weinheim)
container_volume 32
creator Jeong, Seong‐Yong
Kim, Jun‐Sik
Lee, Jong‐Heun
description Artificial olfaction based on gas sensor arrays aims to substitute for, support, and surpass human olfaction. Like mammalian olfaction, a larger number of sensors and more signal processing are crucial for strengthening artificial olfaction. Due to rapid progress in computing capabilities and machine‐learning algorithms, on‐demand high‐performance artificial olfaction that can eclipse human olfaction becomes inevitable once diverse and versatile gas sensing materials are provided. Here, rational strategies to design a myriad of different semiconductor‐based chemiresistors and to grow gas sensing libraries enough to identify a wide range of odors and gases are reviewed, discussed, and suggested. Key approaches include the use of p‐type oxide semiconductors, multinary perovskite and spinel oxides, carbon‐based materials, metal chalcogenides, their heterostructures, as well as heterocomposites as distinctive sensing materials, the utilization of bilayer sensor design, the design of robust sensing materials, and the high‐throughput screening of sensing materials. In addition, the state‐of‐the‐art and key issues in the implementation of electronic noses are discussed. Finally, a perspective on chemiresistive sensing materials for next‐generation artificial olfaction is provided. A variety of material design strategies for the realization of next‐generation artificial olfaction are investigated. Inspired by the mammalian olfactory system, state‐of‐the‐art electronic noses will have diverse material libraries coupled with advanced signal processors that can replace and/or surpass the human olfactory system. These electronic noses are expected to be applicable to numerous on‐demand application fields.
doi_str_mv 10.1002/adma.202002075
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2442846977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471704656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4135-2c65182abfaeb223d8d48997f17debe94710050e46ac33ca4bc909587d74138b3</originalsourceid><addsrcrecordid>eNqFkUtPxCAUhYnR6PjYujQkbtzMCJSWshzHZzJq4mPdULhVTFsUWh87f4K_0V8i4_hI3LiCnHzncLkHoU1KRpQQtqtMo0aMsHgnIl1AA5oyOuREpotoQGSSDmXG8xW0GsIdIURmJFtGKwmTCeEJHaDHC9VZ16oa70OwNy12Fb6ExmrXml53zr-_vu2pAAZPbqPsIxSiGrBqDe5uwXo8taVX3kLAlfP4DJ676DmCFvxnNB77zlZW2_jGeV0pPRPX0VKl6gAbX-cauj48uJocD6fnRyeT8XSoOY2zM52lNGeqrBSUjCUmNzyXUlRUGChBchGXkBLgmdJJohUvtYxfz4UR0Z-XyRramefee_fQQ-iKxgYNda1acH0oGOcs55kUIqLbf9A71_u4mRklqCA8S7NIjeaU9i4ED1Vx722j_EtBSTFrpJg1Uvw0Eg1bX7F92YD5wb8riICcA0-2hpd_4orx_un4N_wDMi6aAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471704656</pqid></control><display><type>article</type><title>Rational Design of Semiconductor‐Based Chemiresistors and their Libraries for Next‐Generation Artificial Olfaction</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jeong, Seong‐Yong ; Kim, Jun‐Sik ; Lee, Jong‐Heun</creator><creatorcontrib>Jeong, Seong‐Yong ; Kim, Jun‐Sik ; Lee, Jong‐Heun</creatorcontrib><description>Artificial olfaction based on gas sensor arrays aims to substitute for, support, and surpass human olfaction. Like mammalian olfaction, a larger number of sensors and more signal processing are crucial for strengthening artificial olfaction. Due to rapid progress in computing capabilities and machine‐learning algorithms, on‐demand high‐performance artificial olfaction that can eclipse human olfaction becomes inevitable once diverse and versatile gas sensing materials are provided. Here, rational strategies to design a myriad of different semiconductor‐based chemiresistors and to grow gas sensing libraries enough to identify a wide range of odors and gases are reviewed, discussed, and suggested. Key approaches include the use of p‐type oxide semiconductors, multinary perovskite and spinel oxides, carbon‐based materials, metal chalcogenides, their heterostructures, as well as heterocomposites as distinctive sensing materials, the utilization of bilayer sensor design, the design of robust sensing materials, and the high‐throughput screening of sensing materials. In addition, the state‐of‐the‐art and key issues in the implementation of electronic noses are discussed. Finally, a perspective on chemiresistive sensing materials for next‐generation artificial olfaction is provided. A variety of material design strategies for the realization of next‐generation artificial olfaction are investigated. Inspired by the mammalian olfactory system, state‐of‐the‐art electronic noses will have diverse material libraries coupled with advanced signal processors that can replace and/or surpass the human olfactory system. These electronic noses are expected to be applicable to numerous on‐demand application fields.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202002075</identifier><identifier>PMID: 32930431</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; artificial olfaction ; Bilayers ; chemiresistors ; Electronic Nose ; Electronic noses ; Equipment Design ; Gas sensors ; Gases ; Gases - analysis ; Gases - chemistry ; Heterostructures ; Humans ; Libraries ; Machine learning ; Materials science ; Odorants - analysis ; Odors ; oxide semiconductors ; Oxides - chemistry ; P-type semiconductors ; Perovskites ; Semiconductors ; Sensor arrays ; Signal processing ; Smell</subject><ispartof>Advanced materials (Weinheim), 2020-12, Vol.32 (51), p.e2002075-n/a</ispartof><rights>2020 The Authors. Published by Wiley‐VCH GmbH</rights><rights>2020 The Authors. Published by Wiley-VCH GmbH.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4135-2c65182abfaeb223d8d48997f17debe94710050e46ac33ca4bc909587d74138b3</citedby><cites>FETCH-LOGICAL-c4135-2c65182abfaeb223d8d48997f17debe94710050e46ac33ca4bc909587d74138b3</cites><orcidid>0000-0002-3075-3623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202002075$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202002075$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32930431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeong, Seong‐Yong</creatorcontrib><creatorcontrib>Kim, Jun‐Sik</creatorcontrib><creatorcontrib>Lee, Jong‐Heun</creatorcontrib><title>Rational Design of Semiconductor‐Based Chemiresistors and their Libraries for Next‐Generation Artificial Olfaction</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Artificial olfaction based on gas sensor arrays aims to substitute for, support, and surpass human olfaction. Like mammalian olfaction, a larger number of sensors and more signal processing are crucial for strengthening artificial olfaction. Due to rapid progress in computing capabilities and machine‐learning algorithms, on‐demand high‐performance artificial olfaction that can eclipse human olfaction becomes inevitable once diverse and versatile gas sensing materials are provided. Here, rational strategies to design a myriad of different semiconductor‐based chemiresistors and to grow gas sensing libraries enough to identify a wide range of odors and gases are reviewed, discussed, and suggested. Key approaches include the use of p‐type oxide semiconductors, multinary perovskite and spinel oxides, carbon‐based materials, metal chalcogenides, their heterostructures, as well as heterocomposites as distinctive sensing materials, the utilization of bilayer sensor design, the design of robust sensing materials, and the high‐throughput screening of sensing materials. In addition, the state‐of‐the‐art and key issues in the implementation of electronic noses are discussed. Finally, a perspective on chemiresistive sensing materials for next‐generation artificial olfaction is provided. A variety of material design strategies for the realization of next‐generation artificial olfaction are investigated. Inspired by the mammalian olfactory system, state‐of‐the‐art electronic noses will have diverse material libraries coupled with advanced signal processors that can replace and/or surpass the human olfactory system. These electronic noses are expected to be applicable to numerous on‐demand application fields.</description><subject>Algorithms</subject><subject>artificial olfaction</subject><subject>Bilayers</subject><subject>chemiresistors</subject><subject>Electronic Nose</subject><subject>Electronic noses</subject><subject>Equipment Design</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Gases - analysis</subject><subject>Gases - chemistry</subject><subject>Heterostructures</subject><subject>Humans</subject><subject>Libraries</subject><subject>Machine learning</subject><subject>Materials science</subject><subject>Odorants - analysis</subject><subject>Odors</subject><subject>oxide semiconductors</subject><subject>Oxides - chemistry</subject><subject>P-type semiconductors</subject><subject>Perovskites</subject><subject>Semiconductors</subject><subject>Sensor arrays</subject><subject>Signal processing</subject><subject>Smell</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtPxCAUhYnR6PjYujQkbtzMCJSWshzHZzJq4mPdULhVTFsUWh87f4K_0V8i4_hI3LiCnHzncLkHoU1KRpQQtqtMo0aMsHgnIl1AA5oyOuREpotoQGSSDmXG8xW0GsIdIURmJFtGKwmTCeEJHaDHC9VZ16oa70OwNy12Fb6ExmrXml53zr-_vu2pAAZPbqPsIxSiGrBqDe5uwXo8taVX3kLAlfP4DJ676DmCFvxnNB77zlZW2_jGeV0pPRPX0VKl6gAbX-cauj48uJocD6fnRyeT8XSoOY2zM52lNGeqrBSUjCUmNzyXUlRUGChBchGXkBLgmdJJohUvtYxfz4UR0Z-XyRramefee_fQQ-iKxgYNda1acH0oGOcs55kUIqLbf9A71_u4mRklqCA8S7NIjeaU9i4ED1Vx722j_EtBSTFrpJg1Uvw0Eg1bX7F92YD5wb8riICcA0-2hpd_4orx_un4N_wDMi6aAA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Jeong, Seong‐Yong</creator><creator>Kim, Jun‐Sik</creator><creator>Lee, Jong‐Heun</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3075-3623</orcidid></search><sort><creationdate>20201201</creationdate><title>Rational Design of Semiconductor‐Based Chemiresistors and their Libraries for Next‐Generation Artificial Olfaction</title><author>Jeong, Seong‐Yong ; Kim, Jun‐Sik ; Lee, Jong‐Heun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4135-2c65182abfaeb223d8d48997f17debe94710050e46ac33ca4bc909587d74138b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>artificial olfaction</topic><topic>Bilayers</topic><topic>chemiresistors</topic><topic>Electronic Nose</topic><topic>Electronic noses</topic><topic>Equipment Design</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Gases - analysis</topic><topic>Gases - chemistry</topic><topic>Heterostructures</topic><topic>Humans</topic><topic>Libraries</topic><topic>Machine learning</topic><topic>Materials science</topic><topic>Odorants - analysis</topic><topic>Odors</topic><topic>oxide semiconductors</topic><topic>Oxides - chemistry</topic><topic>P-type semiconductors</topic><topic>Perovskites</topic><topic>Semiconductors</topic><topic>Sensor arrays</topic><topic>Signal processing</topic><topic>Smell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Seong‐Yong</creatorcontrib><creatorcontrib>Kim, Jun‐Sik</creatorcontrib><creatorcontrib>Lee, Jong‐Heun</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Seong‐Yong</au><au>Kim, Jun‐Sik</au><au>Lee, Jong‐Heun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational Design of Semiconductor‐Based Chemiresistors and their Libraries for Next‐Generation Artificial Olfaction</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>32</volume><issue>51</issue><spage>e2002075</spage><epage>n/a</epage><pages>e2002075-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Artificial olfaction based on gas sensor arrays aims to substitute for, support, and surpass human olfaction. Like mammalian olfaction, a larger number of sensors and more signal processing are crucial for strengthening artificial olfaction. Due to rapid progress in computing capabilities and machine‐learning algorithms, on‐demand high‐performance artificial olfaction that can eclipse human olfaction becomes inevitable once diverse and versatile gas sensing materials are provided. Here, rational strategies to design a myriad of different semiconductor‐based chemiresistors and to grow gas sensing libraries enough to identify a wide range of odors and gases are reviewed, discussed, and suggested. Key approaches include the use of p‐type oxide semiconductors, multinary perovskite and spinel oxides, carbon‐based materials, metal chalcogenides, their heterostructures, as well as heterocomposites as distinctive sensing materials, the utilization of bilayer sensor design, the design of robust sensing materials, and the high‐throughput screening of sensing materials. In addition, the state‐of‐the‐art and key issues in the implementation of electronic noses are discussed. Finally, a perspective on chemiresistive sensing materials for next‐generation artificial olfaction is provided. A variety of material design strategies for the realization of next‐generation artificial olfaction are investigated. Inspired by the mammalian olfactory system, state‐of‐the‐art electronic noses will have diverse material libraries coupled with advanced signal processors that can replace and/or surpass the human olfactory system. These electronic noses are expected to be applicable to numerous on‐demand application fields.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32930431</pmid><doi>10.1002/adma.202002075</doi><tpages>47</tpages><orcidid>https://orcid.org/0000-0002-3075-3623</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-12, Vol.32 (51), p.e2002075-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2442846977
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
artificial olfaction
Bilayers
chemiresistors
Electronic Nose
Electronic noses
Equipment Design
Gas sensors
Gases
Gases - analysis
Gases - chemistry
Heterostructures
Humans
Libraries
Machine learning
Materials science
Odorants - analysis
Odors
oxide semiconductors
Oxides - chemistry
P-type semiconductors
Perovskites
Semiconductors
Sensor arrays
Signal processing
Smell
title Rational Design of Semiconductor‐Based Chemiresistors and their Libraries for Next‐Generation Artificial Olfaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20Design%20of%20Semiconductor%E2%80%90Based%20Chemiresistors%20and%20their%20Libraries%20for%20Next%E2%80%90Generation%20Artificial%20Olfaction&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Jeong,%20Seong%E2%80%90Yong&rft.date=2020-12-01&rft.volume=32&rft.issue=51&rft.spage=e2002075&rft.epage=n/a&rft.pages=e2002075-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202002075&rft_dat=%3Cproquest_cross%3E2471704656%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471704656&rft_id=info:pmid/32930431&rfr_iscdi=true