A new anisotropic soft tissue model for elimination of unphysical auxetic behaviour

Auxetic behaviour, the unphysical transverse expansion during uniaxial tension, is a common and undesirable feature of classical anisotropic hyperelastic constitutive models for soft tissue. In this study we uncover the underlying mechanism of such behaviour; high levels of in-plane compaction occur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2020-10, Vol.111, p.110006-110006, Article 110006
Hauptverfasser: Fereidoonnezhad, B., O’Connor, C., McGarry, J.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110006
container_issue
container_start_page 110006
container_title Journal of biomechanics
container_volume 111
creator Fereidoonnezhad, B.
O’Connor, C.
McGarry, J.P.
description Auxetic behaviour, the unphysical transverse expansion during uniaxial tension, is a common and undesirable feature of classical anisotropic hyperelastic constitutive models for soft tissue. In this study we uncover the underlying mechanism of such behaviour; high levels of in-plane compaction occurs due to increasing tension in strain-stiffening fibres, leading to unphysical out-of-plane expansion. We demonstrate that auxetic behaviour is primarily influenced by the ratio of fibre to matrix stiffness, and is accentuated by strain-stiffening fibres in a constant stiffness matrix (e.g., the widely used neo-Hookean matrix with exponentially stiffening fibres). We propose a new bilinear strain stiffening fibre and matrix (BLFM) model which allows close control of the fibre-matrix stiffness ratio, thereby robustly eliminating auxetic behaviour. We demonstrate that our model provides accurate prediction of experimentally observed out-of-plane compaction, in addition to stress-stretch anisotropy, for arterial tissue subjected to uniaxial tension testing.
doi_str_mv 10.1016/j.jbiomech.2020.110006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2442845223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929020304292</els_id><sourcerecordid>2442845223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-2cfdb46075aabb5c8364fa9cd89e8a06a2e0474945bf4becf8e919b8f625bca13</originalsourceid><addsrcrecordid>eNqFkE1r4zAQhsXSZZt29y8EQS-9OJVkWbZuLaVfUOhhd89CkkdExrZSye7Hv69Ckh566WlgeN53hgehJSUrSqi46Fad8WEAu14xwvKSEkLED7SgTV0WrGzIEVoQwmghmSTH6CSlLhM1r-UvdFwyyWpKqwX6e4VHeMV69ClMMWy8xSm4CU8-pRnwEFrosQsRQ-8HP-rJhxEHh-dxs35P3uoe6_kNppwzsNYvPszxN_rpdJ_gz36eov-3N_-u74vHp7uH66vHwnLOp4JZ1xouSF1pbUxlm1Jwp6VtGwmNJkIzILzmklfGcQPWNSCpNI0TrDJW0_IUne96NzE8z5AmNfhkoe_1CGFOinHOGl4xVmb07Ava5UfH_N2WEkyIquKZEjvKxpBSBKc20Q86vitK1Fa76tRBu9pqVzvtObjc189mgPYzdvCcgcsdANnHi4eokvUwWmh9BDupNvjvbnwAonKXYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446266554</pqid></control><display><type>article</type><title>A new anisotropic soft tissue model for elimination of unphysical auxetic behaviour</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Fereidoonnezhad, B. ; O’Connor, C. ; McGarry, J.P.</creator><creatorcontrib>Fereidoonnezhad, B. ; O’Connor, C. ; McGarry, J.P.</creatorcontrib><description>Auxetic behaviour, the unphysical transverse expansion during uniaxial tension, is a common and undesirable feature of classical anisotropic hyperelastic constitutive models for soft tissue. In this study we uncover the underlying mechanism of such behaviour; high levels of in-plane compaction occurs due to increasing tension in strain-stiffening fibres, leading to unphysical out-of-plane expansion. We demonstrate that auxetic behaviour is primarily influenced by the ratio of fibre to matrix stiffness, and is accentuated by strain-stiffening fibres in a constant stiffness matrix (e.g., the widely used neo-Hookean matrix with exponentially stiffening fibres). We propose a new bilinear strain stiffening fibre and matrix (BLFM) model which allows close control of the fibre-matrix stiffness ratio, thereby robustly eliminating auxetic behaviour. We demonstrate that our model provides accurate prediction of experimentally observed out-of-plane compaction, in addition to stress-stretch anisotropy, for arterial tissue subjected to uniaxial tension testing.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2020.110006</identifier><identifier>PMID: 32927115</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Anisotropy ; Arteries ; Auxetic behaviour ; Collagen ; Compaction ; Constitutive modeling ; Constitutive models ; Decomposition ; Elasticity ; Energy ; Fibers ; Hyperelasticity ; Mathematical models ; Models, Biological ; Soft tissue ; Soft tissues ; Stiffening ; Stiffness matrix ; Strain-stiffening fibre-matrix model ; Stress, Mechanical ; Tension tests ; Veins &amp; arteries</subject><ispartof>Journal of biomechanics, 2020-10, Vol.111, p.110006-110006, Article 110006</ispartof><rights>2020</rights><rights>Copyright © 2020. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier Limited Oct 9, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-2cfdb46075aabb5c8364fa9cd89e8a06a2e0474945bf4becf8e919b8f625bca13</citedby><cites>FETCH-LOGICAL-c444t-2cfdb46075aabb5c8364fa9cd89e8a06a2e0474945bf4becf8e919b8f625bca13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2446266554?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72341</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32927115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fereidoonnezhad, B.</creatorcontrib><creatorcontrib>O’Connor, C.</creatorcontrib><creatorcontrib>McGarry, J.P.</creatorcontrib><title>A new anisotropic soft tissue model for elimination of unphysical auxetic behaviour</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Auxetic behaviour, the unphysical transverse expansion during uniaxial tension, is a common and undesirable feature of classical anisotropic hyperelastic constitutive models for soft tissue. In this study we uncover the underlying mechanism of such behaviour; high levels of in-plane compaction occurs due to increasing tension in strain-stiffening fibres, leading to unphysical out-of-plane expansion. We demonstrate that auxetic behaviour is primarily influenced by the ratio of fibre to matrix stiffness, and is accentuated by strain-stiffening fibres in a constant stiffness matrix (e.g., the widely used neo-Hookean matrix with exponentially stiffening fibres). We propose a new bilinear strain stiffening fibre and matrix (BLFM) model which allows close control of the fibre-matrix stiffness ratio, thereby robustly eliminating auxetic behaviour. We demonstrate that our model provides accurate prediction of experimentally observed out-of-plane compaction, in addition to stress-stretch anisotropy, for arterial tissue subjected to uniaxial tension testing.</description><subject>Anisotropy</subject><subject>Arteries</subject><subject>Auxetic behaviour</subject><subject>Collagen</subject><subject>Compaction</subject><subject>Constitutive modeling</subject><subject>Constitutive models</subject><subject>Decomposition</subject><subject>Elasticity</subject><subject>Energy</subject><subject>Fibers</subject><subject>Hyperelasticity</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Soft tissue</subject><subject>Soft tissues</subject><subject>Stiffening</subject><subject>Stiffness matrix</subject><subject>Strain-stiffening fibre-matrix model</subject><subject>Stress, Mechanical</subject><subject>Tension tests</subject><subject>Veins &amp; arteries</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE1r4zAQhsXSZZt29y8EQS-9OJVkWbZuLaVfUOhhd89CkkdExrZSye7Hv69Ckh566WlgeN53hgehJSUrSqi46Fad8WEAu14xwvKSEkLED7SgTV0WrGzIEVoQwmghmSTH6CSlLhM1r-UvdFwyyWpKqwX6e4VHeMV69ClMMWy8xSm4CU8-pRnwEFrosQsRQ-8HP-rJhxEHh-dxs35P3uoe6_kNppwzsNYvPszxN_rpdJ_gz36eov-3N_-u74vHp7uH66vHwnLOp4JZ1xouSF1pbUxlm1Jwp6VtGwmNJkIzILzmklfGcQPWNSCpNI0TrDJW0_IUne96NzE8z5AmNfhkoe_1CGFOinHOGl4xVmb07Ava5UfH_N2WEkyIquKZEjvKxpBSBKc20Q86vitK1Fa76tRBu9pqVzvtObjc189mgPYzdvCcgcsdANnHi4eokvUwWmh9BDupNvjvbnwAonKXYQ</recordid><startdate>20201009</startdate><enddate>20201009</enddate><creator>Fereidoonnezhad, B.</creator><creator>O’Connor, C.</creator><creator>McGarry, J.P.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20201009</creationdate><title>A new anisotropic soft tissue model for elimination of unphysical auxetic behaviour</title><author>Fereidoonnezhad, B. ; O’Connor, C. ; McGarry, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-2cfdb46075aabb5c8364fa9cd89e8a06a2e0474945bf4becf8e919b8f625bca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Arteries</topic><topic>Auxetic behaviour</topic><topic>Collagen</topic><topic>Compaction</topic><topic>Constitutive modeling</topic><topic>Constitutive models</topic><topic>Decomposition</topic><topic>Elasticity</topic><topic>Energy</topic><topic>Fibers</topic><topic>Hyperelasticity</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Soft tissue</topic><topic>Soft tissues</topic><topic>Stiffening</topic><topic>Stiffness matrix</topic><topic>Strain-stiffening fibre-matrix model</topic><topic>Stress, Mechanical</topic><topic>Tension tests</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fereidoonnezhad, B.</creatorcontrib><creatorcontrib>O’Connor, C.</creatorcontrib><creatorcontrib>McGarry, J.P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fereidoonnezhad, B.</au><au>O’Connor, C.</au><au>McGarry, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new anisotropic soft tissue model for elimination of unphysical auxetic behaviour</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2020-10-09</date><risdate>2020</risdate><volume>111</volume><spage>110006</spage><epage>110006</epage><pages>110006-110006</pages><artnum>110006</artnum><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Auxetic behaviour, the unphysical transverse expansion during uniaxial tension, is a common and undesirable feature of classical anisotropic hyperelastic constitutive models for soft tissue. In this study we uncover the underlying mechanism of such behaviour; high levels of in-plane compaction occurs due to increasing tension in strain-stiffening fibres, leading to unphysical out-of-plane expansion. We demonstrate that auxetic behaviour is primarily influenced by the ratio of fibre to matrix stiffness, and is accentuated by strain-stiffening fibres in a constant stiffness matrix (e.g., the widely used neo-Hookean matrix with exponentially stiffening fibres). We propose a new bilinear strain stiffening fibre and matrix (BLFM) model which allows close control of the fibre-matrix stiffness ratio, thereby robustly eliminating auxetic behaviour. We demonstrate that our model provides accurate prediction of experimentally observed out-of-plane compaction, in addition to stress-stretch anisotropy, for arterial tissue subjected to uniaxial tension testing.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>32927115</pmid><doi>10.1016/j.jbiomech.2020.110006</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2020-10, Vol.111, p.110006-110006, Article 110006
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_2442845223
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Anisotropy
Arteries
Auxetic behaviour
Collagen
Compaction
Constitutive modeling
Constitutive models
Decomposition
Elasticity
Energy
Fibers
Hyperelasticity
Mathematical models
Models, Biological
Soft tissue
Soft tissues
Stiffening
Stiffness matrix
Strain-stiffening fibre-matrix model
Stress, Mechanical
Tension tests
Veins & arteries
title A new anisotropic soft tissue model for elimination of unphysical auxetic behaviour
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20anisotropic%20soft%20tissue%20model%20for%20elimination%20of%20unphysical%20auxetic%20behaviour&rft.jtitle=Journal%20of%20biomechanics&rft.au=Fereidoonnezhad,%20B.&rft.date=2020-10-09&rft.volume=111&rft.spage=110006&rft.epage=110006&rft.pages=110006-110006&rft.artnum=110006&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2020.110006&rft_dat=%3Cproquest_cross%3E2442845223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446266554&rft_id=info:pmid/32927115&rft_els_id=S0021929020304292&rfr_iscdi=true