Structural and chemical analysis of ion beam produced conductive regions on highly resistive organic films

Thin films of both polymeric and nonpolymeric organic solids turn optically dense and electrically conductive on irradiation with high energy ion beams (e.g., 2 MeV Ar+). The structural and chemical properties of these films were investigated by ultraviolet (UV) visible, infrared (IR), Raman spectro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Appl. Phys.; (United States) 1984-11, Vol.56 (10), p.2778-2787
Hauptverfasser: VENKATESAN, T, FORREST, S. R, KAPLAN, M. L, SCHMIDT, P. H, MURRAY, C. A, BROWN, W. L, WILKENS, B. J, ROBERTS, R. F, RUPP, L. JR, SCHONHORN, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2787
container_issue 10
container_start_page 2778
container_title J. Appl. Phys.; (United States)
container_volume 56
creator VENKATESAN, T
FORREST, S. R
KAPLAN, M. L
SCHMIDT, P. H
MURRAY, C. A
BROWN, W. L
WILKENS, B. J
ROBERTS, R. F
RUPP, L. JR
SCHONHORN, H
description Thin films of both polymeric and nonpolymeric organic solids turn optically dense and electrically conductive on irradiation with high energy ion beams (e.g., 2 MeV Ar+). The structural and chemical properties of these films were investigated by ultraviolet (UV) visible, infrared (IR), Raman spectroscopic techniques, electron spin resonance (ESR), electron spectroscopy for chemical analysis (ESCA), and Rutherford backscattering (RBS) measurements. Specifically, in the case of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and nickel phthalocyanine (NiPc), and UV visible, IR, and Raman spectra show the loss of the initial molecular structure at low irradiation doses (1013–1014 cm−2) followed by the appearance, at high doses, of a spectrum similar to that observed for amorphous carbon. The Raman spectra indicate the absence of any long range graphitic microcrystalline structure and suggest that the films are nearly amorphous at higher doses. The RBS spectra indicate gradual loss of oxygen in PTCDA with increasing irradiation dose. There is negligible oxygen left in the film at high doses and a maximum loss of ∼35% (∼15%) of the carbon atoms in PTCDA (NiPc) is observed. The resistivity of the films decreases with increasing dose, reaching a minimum of ∼5×10−4 Ω cm at a dose of ∼1017 Ar+/cm2. Surprisingly, the resistivity of these films at high doses (∼1017 Ar+/cm2) is considerably lower than that of any amorphous phase of carbon. In the case of NiPc, such a low resistivity is obtained even though 60% of the N and 100% of the Ni originally contained in the films are retained. In situ measurements of the evolution rate of molecular fragments during the bombardment indicate a decrease with dose, suggestive of an irreversible modification of the material with ion bombardment.
doi_str_mv 10.1063/1.333809
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_24426579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24426545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-35fcddb312f044e048f158fa04b8e42317b3c562058c4d2dbe134062de95be283</originalsourceid><addsrcrecordid>eNqN0UtLJDEQAOCwKOyoC_sTgoh46bHy6kmOIruuMLCH1XNIpyszkX6MSbcw_944I3v2lKTqS1FJEfKTwZJBLW7ZUgihwXwjCwbaVCul4IQsADirtFmZ7-Qs5xcAxrQwC_Lyb0qzn-bkOuqGlvot9tEfDq7b55jpGGgcB9qg6-kuje3ssbBxKJspviFNuCn54ga6jZttty-Rcu-QG9PGDdHTELs-X5DT4LqMPz7Xc_L8-9fT_Z9q_ffh8f5uXXkJZqqECr5tG8F4ACkRpA5M6eBANholF2zVCK9qDkp72fK2QSYk1LxFoxrkWpyTy2PdsTRhs48T-m1peEA_2VqolTEf6PqIypNeZ8yT7WP22HVuwHHOlkvJ60K_CKUq8OYIfRpzThjsLsXepb1lYD9GY5k9jqbQq8-aLpe_DskNPub_3jDgpoznHRBkjYs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24426545</pqid></control><display><type>article</type><title>Structural and chemical analysis of ion beam produced conductive regions on highly resistive organic films</title><source>AIP Digital Archive</source><creator>VENKATESAN, T ; FORREST, S. R ; KAPLAN, M. L ; SCHMIDT, P. H ; MURRAY, C. A ; BROWN, W. L ; WILKENS, B. J ; ROBERTS, R. F ; RUPP, L. JR ; SCHONHORN, H</creator><creatorcontrib>VENKATESAN, T ; FORREST, S. R ; KAPLAN, M. L ; SCHMIDT, P. H ; MURRAY, C. A ; BROWN, W. L ; WILKENS, B. J ; ROBERTS, R. F ; RUPP, L. JR ; SCHONHORN, H ; AT and T Bell Laboratories, Murray Hill, New Jersey 07974</creatorcontrib><description>Thin films of both polymeric and nonpolymeric organic solids turn optically dense and electrically conductive on irradiation with high energy ion beams (e.g., 2 MeV Ar+). The structural and chemical properties of these films were investigated by ultraviolet (UV) visible, infrared (IR), Raman spectroscopic techniques, electron spin resonance (ESR), electron spectroscopy for chemical analysis (ESCA), and Rutherford backscattering (RBS) measurements. Specifically, in the case of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and nickel phthalocyanine (NiPc), and UV visible, IR, and Raman spectra show the loss of the initial molecular structure at low irradiation doses (1013–1014 cm−2) followed by the appearance, at high doses, of a spectrum similar to that observed for amorphous carbon. The Raman spectra indicate the absence of any long range graphitic microcrystalline structure and suggest that the films are nearly amorphous at higher doses. The RBS spectra indicate gradual loss of oxygen in PTCDA with increasing irradiation dose. There is negligible oxygen left in the film at high doses and a maximum loss of ∼35% (∼15%) of the carbon atoms in PTCDA (NiPc) is observed. The resistivity of the films decreases with increasing dose, reaching a minimum of ∼5×10−4 Ω cm at a dose of ∼1017 Ar+/cm2. Surprisingly, the resistivity of these films at high doses (∼1017 Ar+/cm2) is considerably lower than that of any amorphous phase of carbon. In the case of NiPc, such a low resistivity is obtained even though 60% of the N and 100% of the Ni originally contained in the films are retained. In situ measurements of the evolution rate of molecular fragments during the bombardment indicate a decrease with dose, suggestive of an irreversible modification of the material with ion bombardment.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.333809</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>360406 - Materials- Polymers &amp; Plastics- Radiation Effects- (-1987) ; AMORPHOUS STATE ; BACKSCATTERING ; CHEMICAL PROPERTIES ; COLLISIONS ; Condensed matter: structure, mechanical and thermal properties ; CRYSTAL STRUCTURE ; ELECTRIC CONDUCTIVITY ; ELECTRICAL PROPERTIES ; ELECTRON SPECTROSCOPY ; ELECTRON SPIN RESONANCE ; ENERGY RANGE ; Exact sciences and technology ; INFRARED SPECTRA ; ION COLLISIONS ; Ion radiation effects ; LASER SPECTROSCOPY ; MAGNETIC RESONANCE ; MATERIALS SCIENCE ; MEV RANGE ; MEV RANGE 01-10 ; MICROSTRUCTURE ; OPACITY ; OPTICAL PROPERTIES ; ORGANIC COMPOUNDS ; PHYSICAL PROPERTIES ; PHYSICAL RADIATION EFFECTS ; Physical radiation effects, radiation damage ; Physics ; POLYMERS ; RADIATION EFFECTS ; RAMAN SPECTRA ; RAMAN SPECTROSCOPY ; RESONANCE ; SCATTERING ; SPECTRA ; SPECTROSCOPY ; Structure of solids and liquids; crystallography ; THIN FILMS ; ULTRAVIOLET SPECTRA ; VISIBLE SPECTRA</subject><ispartof>J. Appl. Phys.; (United States), 1984-11, Vol.56 (10), p.2778-2787</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-35fcddb312f044e048f158fa04b8e42317b3c562058c4d2dbe134062de95be283</citedby><cites>FETCH-LOGICAL-c409t-35fcddb312f044e048f158fa04b8e42317b3c562058c4d2dbe134062de95be283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9102918$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6357998$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>VENKATESAN, T</creatorcontrib><creatorcontrib>FORREST, S. R</creatorcontrib><creatorcontrib>KAPLAN, M. L</creatorcontrib><creatorcontrib>SCHMIDT, P. H</creatorcontrib><creatorcontrib>MURRAY, C. A</creatorcontrib><creatorcontrib>BROWN, W. L</creatorcontrib><creatorcontrib>WILKENS, B. J</creatorcontrib><creatorcontrib>ROBERTS, R. F</creatorcontrib><creatorcontrib>RUPP, L. JR</creatorcontrib><creatorcontrib>SCHONHORN, H</creatorcontrib><creatorcontrib>AT and T Bell Laboratories, Murray Hill, New Jersey 07974</creatorcontrib><title>Structural and chemical analysis of ion beam produced conductive regions on highly resistive organic films</title><title>J. Appl. Phys.; (United States)</title><description>Thin films of both polymeric and nonpolymeric organic solids turn optically dense and electrically conductive on irradiation with high energy ion beams (e.g., 2 MeV Ar+). The structural and chemical properties of these films were investigated by ultraviolet (UV) visible, infrared (IR), Raman spectroscopic techniques, electron spin resonance (ESR), electron spectroscopy for chemical analysis (ESCA), and Rutherford backscattering (RBS) measurements. Specifically, in the case of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and nickel phthalocyanine (NiPc), and UV visible, IR, and Raman spectra show the loss of the initial molecular structure at low irradiation doses (1013–1014 cm−2) followed by the appearance, at high doses, of a spectrum similar to that observed for amorphous carbon. The Raman spectra indicate the absence of any long range graphitic microcrystalline structure and suggest that the films are nearly amorphous at higher doses. The RBS spectra indicate gradual loss of oxygen in PTCDA with increasing irradiation dose. There is negligible oxygen left in the film at high doses and a maximum loss of ∼35% (∼15%) of the carbon atoms in PTCDA (NiPc) is observed. The resistivity of the films decreases with increasing dose, reaching a minimum of ∼5×10−4 Ω cm at a dose of ∼1017 Ar+/cm2. Surprisingly, the resistivity of these films at high doses (∼1017 Ar+/cm2) is considerably lower than that of any amorphous phase of carbon. In the case of NiPc, such a low resistivity is obtained even though 60% of the N and 100% of the Ni originally contained in the films are retained. In situ measurements of the evolution rate of molecular fragments during the bombardment indicate a decrease with dose, suggestive of an irreversible modification of the material with ion bombardment.</description><subject>360406 - Materials- Polymers &amp; Plastics- Radiation Effects- (-1987)</subject><subject>AMORPHOUS STATE</subject><subject>BACKSCATTERING</subject><subject>CHEMICAL PROPERTIES</subject><subject>COLLISIONS</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>CRYSTAL STRUCTURE</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>ELECTRICAL PROPERTIES</subject><subject>ELECTRON SPECTROSCOPY</subject><subject>ELECTRON SPIN RESONANCE</subject><subject>ENERGY RANGE</subject><subject>Exact sciences and technology</subject><subject>INFRARED SPECTRA</subject><subject>ION COLLISIONS</subject><subject>Ion radiation effects</subject><subject>LASER SPECTROSCOPY</subject><subject>MAGNETIC RESONANCE</subject><subject>MATERIALS SCIENCE</subject><subject>MEV RANGE</subject><subject>MEV RANGE 01-10</subject><subject>MICROSTRUCTURE</subject><subject>OPACITY</subject><subject>OPTICAL PROPERTIES</subject><subject>ORGANIC COMPOUNDS</subject><subject>PHYSICAL PROPERTIES</subject><subject>PHYSICAL RADIATION EFFECTS</subject><subject>Physical radiation effects, radiation damage</subject><subject>Physics</subject><subject>POLYMERS</subject><subject>RADIATION EFFECTS</subject><subject>RAMAN SPECTRA</subject><subject>RAMAN SPECTROSCOPY</subject><subject>RESONANCE</subject><subject>SCATTERING</subject><subject>SPECTRA</subject><subject>SPECTROSCOPY</subject><subject>Structure of solids and liquids; crystallography</subject><subject>THIN FILMS</subject><subject>ULTRAVIOLET SPECTRA</subject><subject>VISIBLE SPECTRA</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNqN0UtLJDEQAOCwKOyoC_sTgoh46bHy6kmOIruuMLCH1XNIpyszkX6MSbcw_944I3v2lKTqS1FJEfKTwZJBLW7ZUgihwXwjCwbaVCul4IQsADirtFmZ7-Qs5xcAxrQwC_Lyb0qzn-bkOuqGlvot9tEfDq7b55jpGGgcB9qg6-kuje3ssbBxKJspviFNuCn54ga6jZttty-Rcu-QG9PGDdHTELs-X5DT4LqMPz7Xc_L8-9fT_Z9q_ffh8f5uXXkJZqqECr5tG8F4ACkRpA5M6eBANholF2zVCK9qDkp72fK2QSYk1LxFoxrkWpyTy2PdsTRhs48T-m1peEA_2VqolTEf6PqIypNeZ8yT7WP22HVuwHHOlkvJ60K_CKUq8OYIfRpzThjsLsXepb1lYD9GY5k9jqbQq8-aLpe_DskNPub_3jDgpoznHRBkjYs</recordid><startdate>19841115</startdate><enddate>19841115</enddate><creator>VENKATESAN, T</creator><creator>FORREST, S. R</creator><creator>KAPLAN, M. L</creator><creator>SCHMIDT, P. H</creator><creator>MURRAY, C. A</creator><creator>BROWN, W. L</creator><creator>WILKENS, B. J</creator><creator>ROBERTS, R. F</creator><creator>RUPP, L. JR</creator><creator>SCHONHORN, H</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope><scope>OTOTI</scope></search><sort><creationdate>19841115</creationdate><title>Structural and chemical analysis of ion beam produced conductive regions on highly resistive organic films</title><author>VENKATESAN, T ; FORREST, S. R ; KAPLAN, M. L ; SCHMIDT, P. H ; MURRAY, C. A ; BROWN, W. L ; WILKENS, B. J ; ROBERTS, R. F ; RUPP, L. JR ; SCHONHORN, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-35fcddb312f044e048f158fa04b8e42317b3c562058c4d2dbe134062de95be283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>360406 - Materials- Polymers &amp; Plastics- Radiation Effects- (-1987)</topic><topic>AMORPHOUS STATE</topic><topic>BACKSCATTERING</topic><topic>CHEMICAL PROPERTIES</topic><topic>COLLISIONS</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>CRYSTAL STRUCTURE</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>ELECTRICAL PROPERTIES</topic><topic>ELECTRON SPECTROSCOPY</topic><topic>ELECTRON SPIN RESONANCE</topic><topic>ENERGY RANGE</topic><topic>Exact sciences and technology</topic><topic>INFRARED SPECTRA</topic><topic>ION COLLISIONS</topic><topic>Ion radiation effects</topic><topic>LASER SPECTROSCOPY</topic><topic>MAGNETIC RESONANCE</topic><topic>MATERIALS SCIENCE</topic><topic>MEV RANGE</topic><topic>MEV RANGE 01-10</topic><topic>MICROSTRUCTURE</topic><topic>OPACITY</topic><topic>OPTICAL PROPERTIES</topic><topic>ORGANIC COMPOUNDS</topic><topic>PHYSICAL PROPERTIES</topic><topic>PHYSICAL RADIATION EFFECTS</topic><topic>Physical radiation effects, radiation damage</topic><topic>Physics</topic><topic>POLYMERS</topic><topic>RADIATION EFFECTS</topic><topic>RAMAN SPECTRA</topic><topic>RAMAN SPECTROSCOPY</topic><topic>RESONANCE</topic><topic>SCATTERING</topic><topic>SPECTRA</topic><topic>SPECTROSCOPY</topic><topic>Structure of solids and liquids; crystallography</topic><topic>THIN FILMS</topic><topic>ULTRAVIOLET SPECTRA</topic><topic>VISIBLE SPECTRA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VENKATESAN, T</creatorcontrib><creatorcontrib>FORREST, S. R</creatorcontrib><creatorcontrib>KAPLAN, M. L</creatorcontrib><creatorcontrib>SCHMIDT, P. H</creatorcontrib><creatorcontrib>MURRAY, C. A</creatorcontrib><creatorcontrib>BROWN, W. L</creatorcontrib><creatorcontrib>WILKENS, B. J</creatorcontrib><creatorcontrib>ROBERTS, R. F</creatorcontrib><creatorcontrib>RUPP, L. JR</creatorcontrib><creatorcontrib>SCHONHORN, H</creatorcontrib><creatorcontrib>AT and T Bell Laboratories, Murray Hill, New Jersey 07974</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>OSTI.GOV</collection><jtitle>J. Appl. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VENKATESAN, T</au><au>FORREST, S. R</au><au>KAPLAN, M. L</au><au>SCHMIDT, P. H</au><au>MURRAY, C. A</au><au>BROWN, W. L</au><au>WILKENS, B. J</au><au>ROBERTS, R. F</au><au>RUPP, L. JR</au><au>SCHONHORN, H</au><aucorp>AT and T Bell Laboratories, Murray Hill, New Jersey 07974</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and chemical analysis of ion beam produced conductive regions on highly resistive organic films</atitle><jtitle>J. Appl. Phys.; (United States)</jtitle><date>1984-11-15</date><risdate>1984</risdate><volume>56</volume><issue>10</issue><spage>2778</spage><epage>2787</epage><pages>2778-2787</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Thin films of both polymeric and nonpolymeric organic solids turn optically dense and electrically conductive on irradiation with high energy ion beams (e.g., 2 MeV Ar+). The structural and chemical properties of these films were investigated by ultraviolet (UV) visible, infrared (IR), Raman spectroscopic techniques, electron spin resonance (ESR), electron spectroscopy for chemical analysis (ESCA), and Rutherford backscattering (RBS) measurements. Specifically, in the case of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and nickel phthalocyanine (NiPc), and UV visible, IR, and Raman spectra show the loss of the initial molecular structure at low irradiation doses (1013–1014 cm−2) followed by the appearance, at high doses, of a spectrum similar to that observed for amorphous carbon. The Raman spectra indicate the absence of any long range graphitic microcrystalline structure and suggest that the films are nearly amorphous at higher doses. The RBS spectra indicate gradual loss of oxygen in PTCDA with increasing irradiation dose. There is negligible oxygen left in the film at high doses and a maximum loss of ∼35% (∼15%) of the carbon atoms in PTCDA (NiPc) is observed. The resistivity of the films decreases with increasing dose, reaching a minimum of ∼5×10−4 Ω cm at a dose of ∼1017 Ar+/cm2. Surprisingly, the resistivity of these films at high doses (∼1017 Ar+/cm2) is considerably lower than that of any amorphous phase of carbon. In the case of NiPc, such a low resistivity is obtained even though 60% of the N and 100% of the Ni originally contained in the films are retained. In situ measurements of the evolution rate of molecular fragments during the bombardment indicate a decrease with dose, suggestive of an irreversible modification of the material with ion bombardment.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.333809</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof J. Appl. Phys.; (United States), 1984-11, Vol.56 (10), p.2778-2787
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_miscellaneous_24426579
source AIP Digital Archive
subjects 360406 - Materials- Polymers & Plastics- Radiation Effects- (-1987)
AMORPHOUS STATE
BACKSCATTERING
CHEMICAL PROPERTIES
COLLISIONS
Condensed matter: structure, mechanical and thermal properties
CRYSTAL STRUCTURE
ELECTRIC CONDUCTIVITY
ELECTRICAL PROPERTIES
ELECTRON SPECTROSCOPY
ELECTRON SPIN RESONANCE
ENERGY RANGE
Exact sciences and technology
INFRARED SPECTRA
ION COLLISIONS
Ion radiation effects
LASER SPECTROSCOPY
MAGNETIC RESONANCE
MATERIALS SCIENCE
MEV RANGE
MEV RANGE 01-10
MICROSTRUCTURE
OPACITY
OPTICAL PROPERTIES
ORGANIC COMPOUNDS
PHYSICAL PROPERTIES
PHYSICAL RADIATION EFFECTS
Physical radiation effects, radiation damage
Physics
POLYMERS
RADIATION EFFECTS
RAMAN SPECTRA
RAMAN SPECTROSCOPY
RESONANCE
SCATTERING
SPECTRA
SPECTROSCOPY
Structure of solids and liquids
crystallography
THIN FILMS
ULTRAVIOLET SPECTRA
VISIBLE SPECTRA
title Structural and chemical analysis of ion beam produced conductive regions on highly resistive organic films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A54%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20chemical%20analysis%20of%20ion%20beam%20produced%20conductive%20regions%20on%20highly%20resistive%20organic%20films&rft.jtitle=J.%20Appl.%20Phys.;%20(United%20States)&rft.au=VENKATESAN,%20T&rft.aucorp=AT%20and%20T%20Bell%20Laboratories,%20Murray%20Hill,%20New%20Jersey%2007974&rft.date=1984-11-15&rft.volume=56&rft.issue=10&rft.spage=2778&rft.epage=2787&rft.pages=2778-2787&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.333809&rft_dat=%3Cproquest_osti_%3E24426545%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24426545&rft_id=info:pmid/&rfr_iscdi=true