Strain‐Sensitive Magnetization Reversal of a van der Waals Magnet

By virtue of the layered structure, van der Waals (vdW) magnets are sensitive to the lattice deformation controlled by the external strain, providing an ideal platform to explore the one‐step magnetization reversal that is still conceptual in conventional magnets due to the limited strain‐tuning ran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-10, Vol.32 (42), p.e2004533-n/a
Hauptverfasser: Wang, Yu, Wang, Cong, Liang, Shi‐Jun, Ma, Zecheng, Xu, Kang, Liu, Xiaowei, Zhang, Lili, Admasu, Alemayehu S., Cheong, Sang‐Wook, Wang, Lizheng, Chen, Moyu, Liu, Zenglin, Cheng, Bin, Ji, Wei, Miao, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 42
container_start_page e2004533
container_title Advanced materials (Weinheim)
container_volume 32
creator Wang, Yu
Wang, Cong
Liang, Shi‐Jun
Ma, Zecheng
Xu, Kang
Liu, Xiaowei
Zhang, Lili
Admasu, Alemayehu S.
Cheong, Sang‐Wook
Wang, Lizheng
Chen, Moyu
Liu, Zenglin
Cheng, Bin
Ji, Wei
Miao, Feng
description By virtue of the layered structure, van der Waals (vdW) magnets are sensitive to the lattice deformation controlled by the external strain, providing an ideal platform to explore the one‐step magnetization reversal that is still conceptual in conventional magnets due to the limited strain‐tuning range of the coercive field. In this study, a uniaxial tensile strain is applied to thin flakes of the vdW magnet Fe3GeTe2 (FGT), and a dramatic increase of the coercive field (Hc) by more than 150% with an applied strain of 0.32% is observed. Moreover, the change of the transition temperatures between the different magnetic phases under strain is investigated, and the phase diagram of FGT in the strain–temperature plane is obtained. Comparing the phase diagram with theoretical results, the strain‐tunable magnetism is attributed to the sensitive change of magnetic anisotropy energy. Remarkably, strain allows an ultrasensitive magnetization reversal to be achieved, which may promote the development of novel straintronic device applications. An ultrasensitive magnetization reversal in the van der Waals magnet Fe3GeTe2 is realized by strain. Remarkably increased coercive field, Curie temperature, and transition temperature between single‐ and labyrinthine‐domain states under tensile strain are also observed. The strain‐tunable magnetism could result from the sensitive change of magnetic anisotropy energy with the theoretical results.
doi_str_mv 10.1002/adma.202004533
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2442595867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452013139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3503-34d2a0a78c1f94d50076592ebf92d4a00cce6b88770145a0b0216bbd825242553</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuBFFKzVq-cFL15SZ7-S7LHUT2gRrOJxmSQb2ZImdTet1JM_wd_oLzGlRcGLp2HgeYfhJeSUwYAB8Ass5jjgwAGkEmKP9JjiLJKg1T7pgRYq0rFMD8lRCDMA0DHEPTKath5d_fXxObV1cK1bWTrBl9q27h1b19T0wa6sD1jRpqRIV1jTwnr6jFiFnTwmB2W32ZPd7JOn66vH0W00vr-5Gw3HUS4UiEjIgiNgkuas1LJQAEmsNLdZqXkhESDPbZylaZIAkwohA87iLCtSrrjkSok-Od_eXfjmdWlDa-Yu5LaqsLbNMhguO6ZVGicdPftDZ83S1913nVIcmGBCd2qwVblvQvC2NAvv5ujXhoHZdGo2nZqfTruA3gbeXGXX_2gzvJwMf7PfvNd5Mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452013139</pqid></control><display><type>article</type><title>Strain‐Sensitive Magnetization Reversal of a van der Waals Magnet</title><source>Wiley-Blackwell Journals</source><creator>Wang, Yu ; Wang, Cong ; Liang, Shi‐Jun ; Ma, Zecheng ; Xu, Kang ; Liu, Xiaowei ; Zhang, Lili ; Admasu, Alemayehu S. ; Cheong, Sang‐Wook ; Wang, Lizheng ; Chen, Moyu ; Liu, Zenglin ; Cheng, Bin ; Ji, Wei ; Miao, Feng</creator><creatorcontrib>Wang, Yu ; Wang, Cong ; Liang, Shi‐Jun ; Ma, Zecheng ; Xu, Kang ; Liu, Xiaowei ; Zhang, Lili ; Admasu, Alemayehu S. ; Cheong, Sang‐Wook ; Wang, Lizheng ; Chen, Moyu ; Liu, Zenglin ; Cheng, Bin ; Ji, Wei ; Miao, Feng</creatorcontrib><description>By virtue of the layered structure, van der Waals (vdW) magnets are sensitive to the lattice deformation controlled by the external strain, providing an ideal platform to explore the one‐step magnetization reversal that is still conceptual in conventional magnets due to the limited strain‐tuning range of the coercive field. In this study, a uniaxial tensile strain is applied to thin flakes of the vdW magnet Fe3GeTe2 (FGT), and a dramatic increase of the coercive field (Hc) by more than 150% with an applied strain of 0.32% is observed. Moreover, the change of the transition temperatures between the different magnetic phases under strain is investigated, and the phase diagram of FGT in the strain–temperature plane is obtained. Comparing the phase diagram with theoretical results, the strain‐tunable magnetism is attributed to the sensitive change of magnetic anisotropy energy. Remarkably, strain allows an ultrasensitive magnetization reversal to be achieved, which may promote the development of novel straintronic device applications. An ultrasensitive magnetization reversal in the van der Waals magnet Fe3GeTe2 is realized by strain. Remarkably increased coercive field, Curie temperature, and transition temperature between single‐ and labyrinthine‐domain states under tensile strain are also observed. The strain‐tunable magnetism could result from the sensitive change of magnetic anisotropy energy with the theoretical results.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202004533</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>coercive field ; Coercivity ; Fe3GeTe2 ; Magnetic anisotropy ; Magnetism ; Magnetization reversal ; Magnets ; Materials science ; Phase diagrams ; strain ; Strain analysis ; Tensile strain ; van der Waals (vdW) magnets</subject><ispartof>Advanced materials (Weinheim), 2020-10, Vol.32 (42), p.e2004533-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3503-34d2a0a78c1f94d50076592ebf92d4a00cce6b88770145a0b0216bbd825242553</citedby><cites>FETCH-LOGICAL-c3503-34d2a0a78c1f94d50076592ebf92d4a00cce6b88770145a0b0216bbd825242553</cites><orcidid>0000-0002-0962-5424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202004533$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202004533$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Liang, Shi‐Jun</creatorcontrib><creatorcontrib>Ma, Zecheng</creatorcontrib><creatorcontrib>Xu, Kang</creatorcontrib><creatorcontrib>Liu, Xiaowei</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><creatorcontrib>Admasu, Alemayehu S.</creatorcontrib><creatorcontrib>Cheong, Sang‐Wook</creatorcontrib><creatorcontrib>Wang, Lizheng</creatorcontrib><creatorcontrib>Chen, Moyu</creatorcontrib><creatorcontrib>Liu, Zenglin</creatorcontrib><creatorcontrib>Cheng, Bin</creatorcontrib><creatorcontrib>Ji, Wei</creatorcontrib><creatorcontrib>Miao, Feng</creatorcontrib><title>Strain‐Sensitive Magnetization Reversal of a van der Waals Magnet</title><title>Advanced materials (Weinheim)</title><description>By virtue of the layered structure, van der Waals (vdW) magnets are sensitive to the lattice deformation controlled by the external strain, providing an ideal platform to explore the one‐step magnetization reversal that is still conceptual in conventional magnets due to the limited strain‐tuning range of the coercive field. In this study, a uniaxial tensile strain is applied to thin flakes of the vdW magnet Fe3GeTe2 (FGT), and a dramatic increase of the coercive field (Hc) by more than 150% with an applied strain of 0.32% is observed. Moreover, the change of the transition temperatures between the different magnetic phases under strain is investigated, and the phase diagram of FGT in the strain–temperature plane is obtained. Comparing the phase diagram with theoretical results, the strain‐tunable magnetism is attributed to the sensitive change of magnetic anisotropy energy. Remarkably, strain allows an ultrasensitive magnetization reversal to be achieved, which may promote the development of novel straintronic device applications. An ultrasensitive magnetization reversal in the van der Waals magnet Fe3GeTe2 is realized by strain. Remarkably increased coercive field, Curie temperature, and transition temperature between single‐ and labyrinthine‐domain states under tensile strain are also observed. The strain‐tunable magnetism could result from the sensitive change of magnetic anisotropy energy with the theoretical results.</description><subject>coercive field</subject><subject>Coercivity</subject><subject>Fe3GeTe2</subject><subject>Magnetic anisotropy</subject><subject>Magnetism</subject><subject>Magnetization reversal</subject><subject>Magnets</subject><subject>Materials science</subject><subject>Phase diagrams</subject><subject>strain</subject><subject>Strain analysis</subject><subject>Tensile strain</subject><subject>van der Waals (vdW) magnets</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0E1Lw0AQBuBFFKzVq-cFL15SZ7-S7LHUT2gRrOJxmSQb2ZImdTet1JM_wd_oLzGlRcGLp2HgeYfhJeSUwYAB8Ass5jjgwAGkEmKP9JjiLJKg1T7pgRYq0rFMD8lRCDMA0DHEPTKath5d_fXxObV1cK1bWTrBl9q27h1b19T0wa6sD1jRpqRIV1jTwnr6jFiFnTwmB2W32ZPd7JOn66vH0W00vr-5Gw3HUS4UiEjIgiNgkuas1LJQAEmsNLdZqXkhESDPbZylaZIAkwohA87iLCtSrrjkSok-Od_eXfjmdWlDa-Yu5LaqsLbNMhguO6ZVGicdPftDZ83S1913nVIcmGBCd2qwVblvQvC2NAvv5ujXhoHZdGo2nZqfTruA3gbeXGXX_2gzvJwMf7PfvNd5Mw</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Wang, Yu</creator><creator>Wang, Cong</creator><creator>Liang, Shi‐Jun</creator><creator>Ma, Zecheng</creator><creator>Xu, Kang</creator><creator>Liu, Xiaowei</creator><creator>Zhang, Lili</creator><creator>Admasu, Alemayehu S.</creator><creator>Cheong, Sang‐Wook</creator><creator>Wang, Lizheng</creator><creator>Chen, Moyu</creator><creator>Liu, Zenglin</creator><creator>Cheng, Bin</creator><creator>Ji, Wei</creator><creator>Miao, Feng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0962-5424</orcidid></search><sort><creationdate>20201001</creationdate><title>Strain‐Sensitive Magnetization Reversal of a van der Waals Magnet</title><author>Wang, Yu ; Wang, Cong ; Liang, Shi‐Jun ; Ma, Zecheng ; Xu, Kang ; Liu, Xiaowei ; Zhang, Lili ; Admasu, Alemayehu S. ; Cheong, Sang‐Wook ; Wang, Lizheng ; Chen, Moyu ; Liu, Zenglin ; Cheng, Bin ; Ji, Wei ; Miao, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3503-34d2a0a78c1f94d50076592ebf92d4a00cce6b88770145a0b0216bbd825242553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>coercive field</topic><topic>Coercivity</topic><topic>Fe3GeTe2</topic><topic>Magnetic anisotropy</topic><topic>Magnetism</topic><topic>Magnetization reversal</topic><topic>Magnets</topic><topic>Materials science</topic><topic>Phase diagrams</topic><topic>strain</topic><topic>Strain analysis</topic><topic>Tensile strain</topic><topic>van der Waals (vdW) magnets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Liang, Shi‐Jun</creatorcontrib><creatorcontrib>Ma, Zecheng</creatorcontrib><creatorcontrib>Xu, Kang</creatorcontrib><creatorcontrib>Liu, Xiaowei</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><creatorcontrib>Admasu, Alemayehu S.</creatorcontrib><creatorcontrib>Cheong, Sang‐Wook</creatorcontrib><creatorcontrib>Wang, Lizheng</creatorcontrib><creatorcontrib>Chen, Moyu</creatorcontrib><creatorcontrib>Liu, Zenglin</creatorcontrib><creatorcontrib>Cheng, Bin</creatorcontrib><creatorcontrib>Ji, Wei</creatorcontrib><creatorcontrib>Miao, Feng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yu</au><au>Wang, Cong</au><au>Liang, Shi‐Jun</au><au>Ma, Zecheng</au><au>Xu, Kang</au><au>Liu, Xiaowei</au><au>Zhang, Lili</au><au>Admasu, Alemayehu S.</au><au>Cheong, Sang‐Wook</au><au>Wang, Lizheng</au><au>Chen, Moyu</au><au>Liu, Zenglin</au><au>Cheng, Bin</au><au>Ji, Wei</au><au>Miao, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain‐Sensitive Magnetization Reversal of a van der Waals Magnet</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>32</volume><issue>42</issue><spage>e2004533</spage><epage>n/a</epage><pages>e2004533-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>By virtue of the layered structure, van der Waals (vdW) magnets are sensitive to the lattice deformation controlled by the external strain, providing an ideal platform to explore the one‐step magnetization reversal that is still conceptual in conventional magnets due to the limited strain‐tuning range of the coercive field. In this study, a uniaxial tensile strain is applied to thin flakes of the vdW magnet Fe3GeTe2 (FGT), and a dramatic increase of the coercive field (Hc) by more than 150% with an applied strain of 0.32% is observed. Moreover, the change of the transition temperatures between the different magnetic phases under strain is investigated, and the phase diagram of FGT in the strain–temperature plane is obtained. Comparing the phase diagram with theoretical results, the strain‐tunable magnetism is attributed to the sensitive change of magnetic anisotropy energy. Remarkably, strain allows an ultrasensitive magnetization reversal to be achieved, which may promote the development of novel straintronic device applications. An ultrasensitive magnetization reversal in the van der Waals magnet Fe3GeTe2 is realized by strain. Remarkably increased coercive field, Curie temperature, and transition temperature between single‐ and labyrinthine‐domain states under tensile strain are also observed. The strain‐tunable magnetism could result from the sensitive change of magnetic anisotropy energy with the theoretical results.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202004533</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0962-5424</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-10, Vol.32 (42), p.e2004533-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2442595867
source Wiley-Blackwell Journals
subjects coercive field
Coercivity
Fe3GeTe2
Magnetic anisotropy
Magnetism
Magnetization reversal
Magnets
Materials science
Phase diagrams
strain
Strain analysis
Tensile strain
van der Waals (vdW) magnets
title Strain‐Sensitive Magnetization Reversal of a van der Waals Magnet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%E2%80%90Sensitive%20Magnetization%20Reversal%20of%20a%20van%20der%20Waals%20Magnet&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Yu&rft.date=2020-10-01&rft.volume=32&rft.issue=42&rft.spage=e2004533&rft.epage=n/a&rft.pages=e2004533-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202004533&rft_dat=%3Cproquest_cross%3E2452013139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452013139&rft_id=info:pmid/&rfr_iscdi=true