Controlled Cyclopolymerization of 1,5-Hexadiynes to Give Narrow Band Gap Conjugated Polyacetylenes Containing Highly Strained Cyclobutenes
For decades, cyclopolymerization of α,ω-diyne derivatives has been an effective method to synthesize various soluble polyacetylenes containing five- to seven-membered rings in the backbone. However, cyclopolymerization to form four-membered carbocycles was considered impossible due to their exceptio...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2020-10, Vol.142 (40), p.17140-17146 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For decades, cyclopolymerization of α,ω-diyne derivatives has been an effective method to synthesize various soluble polyacetylenes containing five- to seven-membered rings in the backbone. However, cyclopolymerization to form four-membered carbocycles was considered impossible due to their exceptionally high ring strain (∼30 kcal/mol). Herein, we demonstrate the successful cyclopolymerization of rationally designed 1,5-hexadiyne derivatives to afford various polyacetylenes containing highly strained cyclobutenes in each repeat unit. After screening, Ru catalysts containing bulky diisopropylphenyl groups promoted challenging four-membered ring cyclization efficiently from various monomers, enabling the synthesis of high molecular weight (up to 40 kDa) polyacetylenes in a controlled manner. Furthermore, living polymerization allowed for block copolymer synthesis by combining with ring-opening metathesis polymerization as well as block copolymerization of two different 1,5-hexadiyne monomers to give a fully conjugated polyacetylene. These new polymers unexpectedly showed much narrower band gaps than conventional substituted polyacetylenes by >0.2 eV. Interestingly, computational studies showed much smaller bond length alternation in the conjugated backbone containing cyclobutenes, resulting in highly delocalized π electrons along the polymer chain and lower band gaps. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.0c07666 |