Breaking Kasha’s Rule as a Mechanism for Solution-Phase Room-Temperature Phosphorescence from High-Lying Triplet Excited State

Organic room-temperature phosphorescence (ORTP) has been demonstrated successfully in solids. In contrast, solution-phase ORTP is rarely achieved, because the T1 → S0 phosphorescence is too slow to compete against nonradiative decay and the oxygen-quenching effect. Here, we reported that suppression...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2020-10, Vol.11 (19), p.8246-8251
Hauptverfasser: Feng, Changfu, Li, Shuai, Fu, Liyuan, Xiao, Xiaoxiao, Xu, Zhenzhen, Liao, Qing, Wu, Yishi, Yao, Jiannian, Fu, Hongbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8251
container_issue 19
container_start_page 8246
container_title The journal of physical chemistry letters
container_volume 11
creator Feng, Changfu
Li, Shuai
Fu, Liyuan
Xiao, Xiaoxiao
Xu, Zhenzhen
Liao, Qing
Wu, Yishi
Yao, Jiannian
Fu, Hongbing
description Organic room-temperature phosphorescence (ORTP) has been demonstrated successfully in solids. In contrast, solution-phase ORTP is rarely achieved, because the T1 → S0 phosphorescence is too slow to compete against nonradiative decay and the oxygen-quenching effect. Here, we reported that suppression of Kasha’s rule is a strategy to achieve solution-phase ORTP from the high-lying T2 state by spatially separating T2 and T1 on different parts of the molecule (CzCbDBT) composed of carbonyl (Cb), dibenzothiophene (DBT), and carbazole moiety (Cz). On one hand, intersystem crossing (ISC) is much faster from S1 to T2 than that to T1, owing to the small energy-gap ΔE S1–T2 and large spin–orbital coupling ξS1–T2 . On the other hand, T2 → T1 internal conversion is inhibited owing to spatial separation, i.e., T2 on CbDBT and T1 on Cz, respectively. Also, combination of very fast radiative decay from T2 to S0 owing to large ξT2–S0 , the efficient solution-phase ORTP emission from the T2 state was finally achieved.
doi_str_mv 10.1021/acs.jpclett.0c02180
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2442218520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442218520</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-117ddb5ef3800d36a0f7267d36b4632fd9c1b420762e572881f9c6d60685ce63</originalsourceid><addsrcrecordid>eNp9kL9OwzAQxiMEEqXwBCweWdLaTuIkI1SFIoqo2uyW61yalCQOtiPRra_B6_EkuLQDE9Od7r7v_vw875bgEcGUjIU0o20na7B2hKWrJPjMG5A0TPyYJNH5n_zSuzJmizFLcRIPvP2DBvFetRv0IkwpvvdfBi37GpAwSKBXkKVoK9OgQmm0UnVvK9X6i1IYQEulGj-DpgMtbK8BLUplulJpMBJaCajQqkGzalP6891hQ6arzp2Ipp-yspCjlRUWrr2LQtQGbk5x6GWP02wy8-dvT8-T-7kvAkqtT0ic5-sIiiDBOA-YwEVMWeyydcgCWuSpJOuQ4phRiGKaJKRIJcsZZkkkgQVD7-44ttPqowdjeVO5M-tatKB6w2kYUoctothJg6NUamWMhoJ3umqE3nGC-QE3d7j5CTc_4Xau8dH121S9bt03_zp-AFw3iIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442218520</pqid></control><display><type>article</type><title>Breaking Kasha’s Rule as a Mechanism for Solution-Phase Room-Temperature Phosphorescence from High-Lying Triplet Excited State</title><source>ACS Publications</source><creator>Feng, Changfu ; Li, Shuai ; Fu, Liyuan ; Xiao, Xiaoxiao ; Xu, Zhenzhen ; Liao, Qing ; Wu, Yishi ; Yao, Jiannian ; Fu, Hongbing</creator><creatorcontrib>Feng, Changfu ; Li, Shuai ; Fu, Liyuan ; Xiao, Xiaoxiao ; Xu, Zhenzhen ; Liao, Qing ; Wu, Yishi ; Yao, Jiannian ; Fu, Hongbing</creatorcontrib><description>Organic room-temperature phosphorescence (ORTP) has been demonstrated successfully in solids. In contrast, solution-phase ORTP is rarely achieved, because the T1 → S0 phosphorescence is too slow to compete against nonradiative decay and the oxygen-quenching effect. Here, we reported that suppression of Kasha’s rule is a strategy to achieve solution-phase ORTP from the high-lying T2 state by spatially separating T2 and T1 on different parts of the molecule (CzCbDBT) composed of carbonyl (Cb), dibenzothiophene (DBT), and carbazole moiety (Cz). On one hand, intersystem crossing (ISC) is much faster from S1 to T2 than that to T1, owing to the small energy-gap ΔE S1–T2 and large spin–orbital coupling ξS1–T2 . On the other hand, T2 → T1 internal conversion is inhibited owing to spatial separation, i.e., T2 on CbDBT and T1 on Cz, respectively. Also, combination of very fast radiative decay from T2 to S0 owing to large ξT2–S0 , the efficient solution-phase ORTP emission from the T2 state was finally achieved.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.0c02180</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Physical Insights into Materials and Molecular Properties</subject><ispartof>The journal of physical chemistry letters, 2020-10, Vol.11 (19), p.8246-8251</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-117ddb5ef3800d36a0f7267d36b4632fd9c1b420762e572881f9c6d60685ce63</citedby><cites>FETCH-LOGICAL-a322t-117ddb5ef3800d36a0f7267d36b4632fd9c1b420762e572881f9c6d60685ce63</cites><orcidid>0000-0002-9169-4196 ; 0000-0002-0140-4803 ; 0000-0003-4528-189X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.0c02180$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.0c02180$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Feng, Changfu</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Fu, Liyuan</creatorcontrib><creatorcontrib>Xiao, Xiaoxiao</creatorcontrib><creatorcontrib>Xu, Zhenzhen</creatorcontrib><creatorcontrib>Liao, Qing</creatorcontrib><creatorcontrib>Wu, Yishi</creatorcontrib><creatorcontrib>Yao, Jiannian</creatorcontrib><creatorcontrib>Fu, Hongbing</creatorcontrib><title>Breaking Kasha’s Rule as a Mechanism for Solution-Phase Room-Temperature Phosphorescence from High-Lying Triplet Excited State</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Organic room-temperature phosphorescence (ORTP) has been demonstrated successfully in solids. In contrast, solution-phase ORTP is rarely achieved, because the T1 → S0 phosphorescence is too slow to compete against nonradiative decay and the oxygen-quenching effect. Here, we reported that suppression of Kasha’s rule is a strategy to achieve solution-phase ORTP from the high-lying T2 state by spatially separating T2 and T1 on different parts of the molecule (CzCbDBT) composed of carbonyl (Cb), dibenzothiophene (DBT), and carbazole moiety (Cz). On one hand, intersystem crossing (ISC) is much faster from S1 to T2 than that to T1, owing to the small energy-gap ΔE S1–T2 and large spin–orbital coupling ξS1–T2 . On the other hand, T2 → T1 internal conversion is inhibited owing to spatial separation, i.e., T2 on CbDBT and T1 on Cz, respectively. Also, combination of very fast radiative decay from T2 to S0 owing to large ξT2–S0 , the efficient solution-phase ORTP emission from the T2 state was finally achieved.</description><subject>Physical Insights into Materials and Molecular Properties</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kL9OwzAQxiMEEqXwBCweWdLaTuIkI1SFIoqo2uyW61yalCQOtiPRra_B6_EkuLQDE9Od7r7v_vw875bgEcGUjIU0o20na7B2hKWrJPjMG5A0TPyYJNH5n_zSuzJmizFLcRIPvP2DBvFetRv0IkwpvvdfBi37GpAwSKBXkKVoK9OgQmm0UnVvK9X6i1IYQEulGj-DpgMtbK8BLUplulJpMBJaCajQqkGzalP6891hQ6arzp2Ipp-yspCjlRUWrr2LQtQGbk5x6GWP02wy8-dvT8-T-7kvAkqtT0ic5-sIiiDBOA-YwEVMWeyydcgCWuSpJOuQ4phRiGKaJKRIJcsZZkkkgQVD7-44ttPqowdjeVO5M-tatKB6w2kYUoctothJg6NUamWMhoJ3umqE3nGC-QE3d7j5CTc_4Xau8dH121S9bt03_zp-AFw3iIE</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Feng, Changfu</creator><creator>Li, Shuai</creator><creator>Fu, Liyuan</creator><creator>Xiao, Xiaoxiao</creator><creator>Xu, Zhenzhen</creator><creator>Liao, Qing</creator><creator>Wu, Yishi</creator><creator>Yao, Jiannian</creator><creator>Fu, Hongbing</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9169-4196</orcidid><orcidid>https://orcid.org/0000-0002-0140-4803</orcidid><orcidid>https://orcid.org/0000-0003-4528-189X</orcidid></search><sort><creationdate>20201001</creationdate><title>Breaking Kasha’s Rule as a Mechanism for Solution-Phase Room-Temperature Phosphorescence from High-Lying Triplet Excited State</title><author>Feng, Changfu ; Li, Shuai ; Fu, Liyuan ; Xiao, Xiaoxiao ; Xu, Zhenzhen ; Liao, Qing ; Wu, Yishi ; Yao, Jiannian ; Fu, Hongbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-117ddb5ef3800d36a0f7267d36b4632fd9c1b420762e572881f9c6d60685ce63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Physical Insights into Materials and Molecular Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Changfu</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Fu, Liyuan</creatorcontrib><creatorcontrib>Xiao, Xiaoxiao</creatorcontrib><creatorcontrib>Xu, Zhenzhen</creatorcontrib><creatorcontrib>Liao, Qing</creatorcontrib><creatorcontrib>Wu, Yishi</creatorcontrib><creatorcontrib>Yao, Jiannian</creatorcontrib><creatorcontrib>Fu, Hongbing</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Changfu</au><au>Li, Shuai</au><au>Fu, Liyuan</au><au>Xiao, Xiaoxiao</au><au>Xu, Zhenzhen</au><au>Liao, Qing</au><au>Wu, Yishi</au><au>Yao, Jiannian</au><au>Fu, Hongbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking Kasha’s Rule as a Mechanism for Solution-Phase Room-Temperature Phosphorescence from High-Lying Triplet Excited State</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>11</volume><issue>19</issue><spage>8246</spage><epage>8251</epage><pages>8246-8251</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Organic room-temperature phosphorescence (ORTP) has been demonstrated successfully in solids. In contrast, solution-phase ORTP is rarely achieved, because the T1 → S0 phosphorescence is too slow to compete against nonradiative decay and the oxygen-quenching effect. Here, we reported that suppression of Kasha’s rule is a strategy to achieve solution-phase ORTP from the high-lying T2 state by spatially separating T2 and T1 on different parts of the molecule (CzCbDBT) composed of carbonyl (Cb), dibenzothiophene (DBT), and carbazole moiety (Cz). On one hand, intersystem crossing (ISC) is much faster from S1 to T2 than that to T1, owing to the small energy-gap ΔE S1–T2 and large spin–orbital coupling ξS1–T2 . On the other hand, T2 → T1 internal conversion is inhibited owing to spatial separation, i.e., T2 on CbDBT and T1 on Cz, respectively. Also, combination of very fast radiative decay from T2 to S0 owing to large ξT2–S0 , the efficient solution-phase ORTP emission from the T2 state was finally achieved.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.0c02180</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9169-4196</orcidid><orcidid>https://orcid.org/0000-0002-0140-4803</orcidid><orcidid>https://orcid.org/0000-0003-4528-189X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2020-10, Vol.11 (19), p.8246-8251
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2442218520
source ACS Publications
subjects Physical Insights into Materials and Molecular Properties
title Breaking Kasha’s Rule as a Mechanism for Solution-Phase Room-Temperature Phosphorescence from High-Lying Triplet Excited State
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20Kasha%E2%80%99s%20Rule%20as%20a%20Mechanism%20for%20Solution-Phase%20Room-Temperature%20Phosphorescence%20from%20High-Lying%20Triplet%20Excited%20State&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Feng,%20Changfu&rft.date=2020-10-01&rft.volume=11&rft.issue=19&rft.spage=8246&rft.epage=8251&rft.pages=8246-8251&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.0c02180&rft_dat=%3Cproquest_cross%3E2442218520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442218520&rft_id=info:pmid/&rfr_iscdi=true