Enhancement of neuroprotection, antioxidant capacity, and water-solubility of crocins by transglucosylation using dextransucrase under high hydrostatic pressure

[Display omitted] •High hydrostatic pressure (HHP) technique was used to the transglucosylation reaction for the first time.•HHP technique improved transglucosylation yield 95% more at 100 MPa.•Novel α-glucosyl-(1→6)-trans-crocins was synthesized and showed better water solubility and antioxidant ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Enzyme and microbial technology 2020-10, Vol.140, p.109630-109630, Article 109630
Hauptverfasser: Mok, Il-Kyoon, Nguyen, Thi Thanh Hanh, Kim, Dong Hoi, Lee, Jae Wook, Lim, Sangyong, Jung, Ho-yong, Lim, Taeyun, Pal, Kunal, Kim, Doman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109630
container_issue
container_start_page 109630
container_title Enzyme and microbial technology
container_volume 140
creator Mok, Il-Kyoon
Nguyen, Thi Thanh Hanh
Kim, Dong Hoi
Lee, Jae Wook
Lim, Sangyong
Jung, Ho-yong
Lim, Taeyun
Pal, Kunal
Kim, Doman
description [Display omitted] •High hydrostatic pressure (HHP) technique was used to the transglucosylation reaction for the first time.•HHP technique improved transglucosylation yield 95% more at 100 MPa.•Novel α-glucosyl-(1→6)-trans-crocins was synthesized and showed better water solubility and antioxidant activities.•Novel α-glucosyl-(1→6)-trans-crocins had significantly higher neuroprotective effect on HT22 neuronal cells. Crocin, one of the major carotenoid pigments of Crocus sativus (saffron), is responsible for antioxidant activity, neuroprotection, and the inhibition of tumor cell proliferation. In order to improve the functionality of crocin, α-glucosyl-(1→6)-trans-crocins (C–Gs) were synthesized using sucrose and dextransucrase from Leuconostoc mesenteroides. High hydrostatic pressure (HHP) technique was applied to the synthesis process of C–Gs in order to improve its transglucosylation yield. A 100 MPa HHP condition enhanced the production yield of C–Gs by 1.95 times compared to that of 0.1 MPa atmospheric pressure. Novel C–Gs were purified by HPLC, and their chemical structures were determined using NMR analysis. Novel C–Gs increased water solubility 4.6–5.7 times and antioxidant activity 1.5–2.6 times, respectively, compared to crocin, and their neuroprotections (cell viability 92.5–100.4 %) on HT22 mouse hippocampal neuronal cells were significantly higher than that of crocin (cell viability 84.6 %). This advanced neuroprotection of novel C–Gs could be highly associated with their enhanced antioxidant activity. Thus, the enhanced water solubility and functionality of novel C–Gs can induce better clinical efficacy of neuroprotection than trans-crocin.
doi_str_mv 10.1016/j.enzmictec.2020.109630
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2441611022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014102292030123X</els_id><sourcerecordid>2441611022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-ea50cd1c52abdc49792ddace9490221d716a293f3f1d8a6177a6e1948cc69cc03</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS1ERZfCXwAfOZDFdtJkfayqUpAqcaFnyzue7HqV2IsnhoZfw0_F6ZZeOY30_OaNnj_G3kuxlkK2nw5rDL9HDxPCWgm1qLqtxQu2kptOV0IL_ZKthGxkJZTS5-w10UGIIjTiFTuvlZaq1WLF_tyEvQ2AI4aJx54HzCkeUyzBk4_hI7ehzAfvyuRgjxb8NC-q47_shKmiOOStH4q6rEOK4APx7cynZAPthgyR5sEuYTyTDzvu8OHxLUOyhDwHh4nv_W7P97NLkaZiBn5MSJQTvmFnvR0I3z7NC3b_-eb79Zfq7tvt1-uruwrqTk4V2ksBTsKlslsHje60cs4C6kaXD5Cuk61Vuu7rXrqNbWXX2RalbjYArQYQ9QX7cMot5X9kpMmMngCHwQaMmYxqGtlKWcKKtTtZS1uihL05Jj_aNBspzILHHMwzHrPgMSc8ZfPd05G8HdE97_3jUQxXJwOWqj89JkPgsfBxPhUixkX_3yN_AfTzq1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441611022</pqid></control><display><type>article</type><title>Enhancement of neuroprotection, antioxidant capacity, and water-solubility of crocins by transglucosylation using dextransucrase under high hydrostatic pressure</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Mok, Il-Kyoon ; Nguyen, Thi Thanh Hanh ; Kim, Dong Hoi ; Lee, Jae Wook ; Lim, Sangyong ; Jung, Ho-yong ; Lim, Taeyun ; Pal, Kunal ; Kim, Doman</creator><creatorcontrib>Mok, Il-Kyoon ; Nguyen, Thi Thanh Hanh ; Kim, Dong Hoi ; Lee, Jae Wook ; Lim, Sangyong ; Jung, Ho-yong ; Lim, Taeyun ; Pal, Kunal ; Kim, Doman</creatorcontrib><description>[Display omitted] •High hydrostatic pressure (HHP) technique was used to the transglucosylation reaction for the first time.•HHP technique improved transglucosylation yield 95% more at 100 MPa.•Novel α-glucosyl-(1→6)-trans-crocins was synthesized and showed better water solubility and antioxidant activities.•Novel α-glucosyl-(1→6)-trans-crocins had significantly higher neuroprotective effect on HT22 neuronal cells. Crocin, one of the major carotenoid pigments of Crocus sativus (saffron), is responsible for antioxidant activity, neuroprotection, and the inhibition of tumor cell proliferation. In order to improve the functionality of crocin, α-glucosyl-(1→6)-trans-crocins (C–Gs) were synthesized using sucrose and dextransucrase from Leuconostoc mesenteroides. High hydrostatic pressure (HHP) technique was applied to the synthesis process of C–Gs in order to improve its transglucosylation yield. A 100 MPa HHP condition enhanced the production yield of C–Gs by 1.95 times compared to that of 0.1 MPa atmospheric pressure. Novel C–Gs were purified by HPLC, and their chemical structures were determined using NMR analysis. Novel C–Gs increased water solubility 4.6–5.7 times and antioxidant activity 1.5–2.6 times, respectively, compared to crocin, and their neuroprotections (cell viability 92.5–100.4 %) on HT22 mouse hippocampal neuronal cells were significantly higher than that of crocin (cell viability 84.6 %). This advanced neuroprotection of novel C–Gs could be highly associated with their enhanced antioxidant activity. Thus, the enhanced water solubility and functionality of novel C–Gs can induce better clinical efficacy of neuroprotection than trans-crocin.</description><identifier>ISSN: 0141-0229</identifier><identifier>EISSN: 1879-0909</identifier><identifier>DOI: 10.1016/j.enzmictec.2020.109630</identifier><identifier>PMID: 32912690</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Antioxidant ; Antioxidants - chemistry ; Antioxidants - metabolism ; Antioxidants - pharmacology ; Carotenoids - chemistry ; Carotenoids - metabolism ; Carotenoids - pharmacology ; Cell Line ; Crocin ; Dextransucrase ; Glucosyltransferases - metabolism ; Glycosylation ; High hydrostatic pressure ; Hydrostatic Pressure ; Leuconostoc mesenteroides - enzymology ; Mice ; Molecular Structure ; Neuroprotection ; Neuroprotection - drug effects ; Solubility ; Sucrose - metabolism ; Transglucosylation ; Water - chemistry</subject><ispartof>Enzyme and microbial technology, 2020-10, Vol.140, p.109630-109630, Article 109630</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-ea50cd1c52abdc49792ddace9490221d716a293f3f1d8a6177a6e1948cc69cc03</citedby><cites>FETCH-LOGICAL-c371t-ea50cd1c52abdc49792ddace9490221d716a293f3f1d8a6177a6e1948cc69cc03</cites><orcidid>0000-0001-6318-6736 ; 0000-0003-0389-3441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S014102292030123X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32912690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mok, Il-Kyoon</creatorcontrib><creatorcontrib>Nguyen, Thi Thanh Hanh</creatorcontrib><creatorcontrib>Kim, Dong Hoi</creatorcontrib><creatorcontrib>Lee, Jae Wook</creatorcontrib><creatorcontrib>Lim, Sangyong</creatorcontrib><creatorcontrib>Jung, Ho-yong</creatorcontrib><creatorcontrib>Lim, Taeyun</creatorcontrib><creatorcontrib>Pal, Kunal</creatorcontrib><creatorcontrib>Kim, Doman</creatorcontrib><title>Enhancement of neuroprotection, antioxidant capacity, and water-solubility of crocins by transglucosylation using dextransucrase under high hydrostatic pressure</title><title>Enzyme and microbial technology</title><addtitle>Enzyme Microb Technol</addtitle><description>[Display omitted] •High hydrostatic pressure (HHP) technique was used to the transglucosylation reaction for the first time.•HHP technique improved transglucosylation yield 95% more at 100 MPa.•Novel α-glucosyl-(1→6)-trans-crocins was synthesized and showed better water solubility and antioxidant activities.•Novel α-glucosyl-(1→6)-trans-crocins had significantly higher neuroprotective effect on HT22 neuronal cells. Crocin, one of the major carotenoid pigments of Crocus sativus (saffron), is responsible for antioxidant activity, neuroprotection, and the inhibition of tumor cell proliferation. In order to improve the functionality of crocin, α-glucosyl-(1→6)-trans-crocins (C–Gs) were synthesized using sucrose and dextransucrase from Leuconostoc mesenteroides. High hydrostatic pressure (HHP) technique was applied to the synthesis process of C–Gs in order to improve its transglucosylation yield. A 100 MPa HHP condition enhanced the production yield of C–Gs by 1.95 times compared to that of 0.1 MPa atmospheric pressure. Novel C–Gs were purified by HPLC, and their chemical structures were determined using NMR analysis. Novel C–Gs increased water solubility 4.6–5.7 times and antioxidant activity 1.5–2.6 times, respectively, compared to crocin, and their neuroprotections (cell viability 92.5–100.4 %) on HT22 mouse hippocampal neuronal cells were significantly higher than that of crocin (cell viability 84.6 %). This advanced neuroprotection of novel C–Gs could be highly associated with their enhanced antioxidant activity. Thus, the enhanced water solubility and functionality of novel C–Gs can induce better clinical efficacy of neuroprotection than trans-crocin.</description><subject>Animals</subject><subject>Antioxidant</subject><subject>Antioxidants - chemistry</subject><subject>Antioxidants - metabolism</subject><subject>Antioxidants - pharmacology</subject><subject>Carotenoids - chemistry</subject><subject>Carotenoids - metabolism</subject><subject>Carotenoids - pharmacology</subject><subject>Cell Line</subject><subject>Crocin</subject><subject>Dextransucrase</subject><subject>Glucosyltransferases - metabolism</subject><subject>Glycosylation</subject><subject>High hydrostatic pressure</subject><subject>Hydrostatic Pressure</subject><subject>Leuconostoc mesenteroides - enzymology</subject><subject>Mice</subject><subject>Molecular Structure</subject><subject>Neuroprotection</subject><subject>Neuroprotection - drug effects</subject><subject>Solubility</subject><subject>Sucrose - metabolism</subject><subject>Transglucosylation</subject><subject>Water - chemistry</subject><issn>0141-0229</issn><issn>1879-0909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS1ERZfCXwAfOZDFdtJkfayqUpAqcaFnyzue7HqV2IsnhoZfw0_F6ZZeOY30_OaNnj_G3kuxlkK2nw5rDL9HDxPCWgm1qLqtxQu2kptOV0IL_ZKthGxkJZTS5-w10UGIIjTiFTuvlZaq1WLF_tyEvQ2AI4aJx54HzCkeUyzBk4_hI7ehzAfvyuRgjxb8NC-q47_shKmiOOStH4q6rEOK4APx7cynZAPthgyR5sEuYTyTDzvu8OHxLUOyhDwHh4nv_W7P97NLkaZiBn5MSJQTvmFnvR0I3z7NC3b_-eb79Zfq7tvt1-uruwrqTk4V2ksBTsKlslsHje60cs4C6kaXD5Cuk61Vuu7rXrqNbWXX2RalbjYArQYQ9QX7cMot5X9kpMmMngCHwQaMmYxqGtlKWcKKtTtZS1uihL05Jj_aNBspzILHHMwzHrPgMSc8ZfPd05G8HdE97_3jUQxXJwOWqj89JkPgsfBxPhUixkX_3yN_AfTzq1c</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Mok, Il-Kyoon</creator><creator>Nguyen, Thi Thanh Hanh</creator><creator>Kim, Dong Hoi</creator><creator>Lee, Jae Wook</creator><creator>Lim, Sangyong</creator><creator>Jung, Ho-yong</creator><creator>Lim, Taeyun</creator><creator>Pal, Kunal</creator><creator>Kim, Doman</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6318-6736</orcidid><orcidid>https://orcid.org/0000-0003-0389-3441</orcidid></search><sort><creationdate>202010</creationdate><title>Enhancement of neuroprotection, antioxidant capacity, and water-solubility of crocins by transglucosylation using dextransucrase under high hydrostatic pressure</title><author>Mok, Il-Kyoon ; Nguyen, Thi Thanh Hanh ; Kim, Dong Hoi ; Lee, Jae Wook ; Lim, Sangyong ; Jung, Ho-yong ; Lim, Taeyun ; Pal, Kunal ; Kim, Doman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-ea50cd1c52abdc49792ddace9490221d716a293f3f1d8a6177a6e1948cc69cc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antioxidant</topic><topic>Antioxidants - chemistry</topic><topic>Antioxidants - metabolism</topic><topic>Antioxidants - pharmacology</topic><topic>Carotenoids - chemistry</topic><topic>Carotenoids - metabolism</topic><topic>Carotenoids - pharmacology</topic><topic>Cell Line</topic><topic>Crocin</topic><topic>Dextransucrase</topic><topic>Glucosyltransferases - metabolism</topic><topic>Glycosylation</topic><topic>High hydrostatic pressure</topic><topic>Hydrostatic Pressure</topic><topic>Leuconostoc mesenteroides - enzymology</topic><topic>Mice</topic><topic>Molecular Structure</topic><topic>Neuroprotection</topic><topic>Neuroprotection - drug effects</topic><topic>Solubility</topic><topic>Sucrose - metabolism</topic><topic>Transglucosylation</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mok, Il-Kyoon</creatorcontrib><creatorcontrib>Nguyen, Thi Thanh Hanh</creatorcontrib><creatorcontrib>Kim, Dong Hoi</creatorcontrib><creatorcontrib>Lee, Jae Wook</creatorcontrib><creatorcontrib>Lim, Sangyong</creatorcontrib><creatorcontrib>Jung, Ho-yong</creatorcontrib><creatorcontrib>Lim, Taeyun</creatorcontrib><creatorcontrib>Pal, Kunal</creatorcontrib><creatorcontrib>Kim, Doman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Enzyme and microbial technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mok, Il-Kyoon</au><au>Nguyen, Thi Thanh Hanh</au><au>Kim, Dong Hoi</au><au>Lee, Jae Wook</au><au>Lim, Sangyong</au><au>Jung, Ho-yong</au><au>Lim, Taeyun</au><au>Pal, Kunal</au><au>Kim, Doman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of neuroprotection, antioxidant capacity, and water-solubility of crocins by transglucosylation using dextransucrase under high hydrostatic pressure</atitle><jtitle>Enzyme and microbial technology</jtitle><addtitle>Enzyme Microb Technol</addtitle><date>2020-10</date><risdate>2020</risdate><volume>140</volume><spage>109630</spage><epage>109630</epage><pages>109630-109630</pages><artnum>109630</artnum><issn>0141-0229</issn><eissn>1879-0909</eissn><abstract>[Display omitted] •High hydrostatic pressure (HHP) technique was used to the transglucosylation reaction for the first time.•HHP technique improved transglucosylation yield 95% more at 100 MPa.•Novel α-glucosyl-(1→6)-trans-crocins was synthesized and showed better water solubility and antioxidant activities.•Novel α-glucosyl-(1→6)-trans-crocins had significantly higher neuroprotective effect on HT22 neuronal cells. Crocin, one of the major carotenoid pigments of Crocus sativus (saffron), is responsible for antioxidant activity, neuroprotection, and the inhibition of tumor cell proliferation. In order to improve the functionality of crocin, α-glucosyl-(1→6)-trans-crocins (C–Gs) were synthesized using sucrose and dextransucrase from Leuconostoc mesenteroides. High hydrostatic pressure (HHP) technique was applied to the synthesis process of C–Gs in order to improve its transglucosylation yield. A 100 MPa HHP condition enhanced the production yield of C–Gs by 1.95 times compared to that of 0.1 MPa atmospheric pressure. Novel C–Gs were purified by HPLC, and their chemical structures were determined using NMR analysis. Novel C–Gs increased water solubility 4.6–5.7 times and antioxidant activity 1.5–2.6 times, respectively, compared to crocin, and their neuroprotections (cell viability 92.5–100.4 %) on HT22 mouse hippocampal neuronal cells were significantly higher than that of crocin (cell viability 84.6 %). This advanced neuroprotection of novel C–Gs could be highly associated with their enhanced antioxidant activity. Thus, the enhanced water solubility and functionality of novel C–Gs can induce better clinical efficacy of neuroprotection than trans-crocin.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32912690</pmid><doi>10.1016/j.enzmictec.2020.109630</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6318-6736</orcidid><orcidid>https://orcid.org/0000-0003-0389-3441</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0141-0229
ispartof Enzyme and microbial technology, 2020-10, Vol.140, p.109630-109630, Article 109630
issn 0141-0229
1879-0909
language eng
recordid cdi_proquest_miscellaneous_2441611022
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Antioxidant
Antioxidants - chemistry
Antioxidants - metabolism
Antioxidants - pharmacology
Carotenoids - chemistry
Carotenoids - metabolism
Carotenoids - pharmacology
Cell Line
Crocin
Dextransucrase
Glucosyltransferases - metabolism
Glycosylation
High hydrostatic pressure
Hydrostatic Pressure
Leuconostoc mesenteroides - enzymology
Mice
Molecular Structure
Neuroprotection
Neuroprotection - drug effects
Solubility
Sucrose - metabolism
Transglucosylation
Water - chemistry
title Enhancement of neuroprotection, antioxidant capacity, and water-solubility of crocins by transglucosylation using dextransucrase under high hydrostatic pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A51%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20neuroprotection,%20antioxidant%20capacity,%20and%20water-solubility%20of%20crocins%20by%20transglucosylation%20using%20dextransucrase%20under%20high%20hydrostatic%20pressure&rft.jtitle=Enzyme%20and%20microbial%20technology&rft.au=Mok,%20Il-Kyoon&rft.date=2020-10&rft.volume=140&rft.spage=109630&rft.epage=109630&rft.pages=109630-109630&rft.artnum=109630&rft.issn=0141-0229&rft.eissn=1879-0909&rft_id=info:doi/10.1016/j.enzmictec.2020.109630&rft_dat=%3Cproquest_cross%3E2441611022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441611022&rft_id=info:pmid/32912690&rft_els_id=S014102292030123X&rfr_iscdi=true