Enhancement of neuroprotection, antioxidant capacity, and water-solubility of crocins by transglucosylation using dextransucrase under high hydrostatic pressure
[Display omitted] •High hydrostatic pressure (HHP) technique was used to the transglucosylation reaction for the first time.•HHP technique improved transglucosylation yield 95% more at 100 MPa.•Novel α-glucosyl-(1→6)-trans-crocins was synthesized and showed better water solubility and antioxidant ac...
Gespeichert in:
Veröffentlicht in: | Enzyme and microbial technology 2020-10, Vol.140, p.109630-109630, Article 109630 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 109630 |
---|---|
container_issue | |
container_start_page | 109630 |
container_title | Enzyme and microbial technology |
container_volume | 140 |
creator | Mok, Il-Kyoon Nguyen, Thi Thanh Hanh Kim, Dong Hoi Lee, Jae Wook Lim, Sangyong Jung, Ho-yong Lim, Taeyun Pal, Kunal Kim, Doman |
description | [Display omitted]
•High hydrostatic pressure (HHP) technique was used to the transglucosylation reaction for the first time.•HHP technique improved transglucosylation yield 95% more at 100 MPa.•Novel α-glucosyl-(1→6)-trans-crocins was synthesized and showed better water solubility and antioxidant activities.•Novel α-glucosyl-(1→6)-trans-crocins had significantly higher neuroprotective effect on HT22 neuronal cells.
Crocin, one of the major carotenoid pigments of Crocus sativus (saffron), is responsible for antioxidant activity, neuroprotection, and the inhibition of tumor cell proliferation. In order to improve the functionality of crocin, α-glucosyl-(1→6)-trans-crocins (C–Gs) were synthesized using sucrose and dextransucrase from Leuconostoc mesenteroides. High hydrostatic pressure (HHP) technique was applied to the synthesis process of C–Gs in order to improve its transglucosylation yield. A 100 MPa HHP condition enhanced the production yield of C–Gs by 1.95 times compared to that of 0.1 MPa atmospheric pressure. Novel C–Gs were purified by HPLC, and their chemical structures were determined using NMR analysis. Novel C–Gs increased water solubility 4.6–5.7 times and antioxidant activity 1.5–2.6 times, respectively, compared to crocin, and their neuroprotections (cell viability 92.5–100.4 %) on HT22 mouse hippocampal neuronal cells were significantly higher than that of crocin (cell viability 84.6 %). This advanced neuroprotection of novel C–Gs could be highly associated with their enhanced antioxidant activity. Thus, the enhanced water solubility and functionality of novel C–Gs can induce better clinical efficacy of neuroprotection than trans-crocin. |
doi_str_mv | 10.1016/j.enzmictec.2020.109630 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2441611022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014102292030123X</els_id><sourcerecordid>2441611022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-ea50cd1c52abdc49792ddace9490221d716a293f3f1d8a6177a6e1948cc69cc03</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS1ERZfCXwAfOZDFdtJkfayqUpAqcaFnyzue7HqV2IsnhoZfw0_F6ZZeOY30_OaNnj_G3kuxlkK2nw5rDL9HDxPCWgm1qLqtxQu2kptOV0IL_ZKthGxkJZTS5-w10UGIIjTiFTuvlZaq1WLF_tyEvQ2AI4aJx54HzCkeUyzBk4_hI7ehzAfvyuRgjxb8NC-q47_shKmiOOStH4q6rEOK4APx7cynZAPthgyR5sEuYTyTDzvu8OHxLUOyhDwHh4nv_W7P97NLkaZiBn5MSJQTvmFnvR0I3z7NC3b_-eb79Zfq7tvt1-uruwrqTk4V2ksBTsKlslsHje60cs4C6kaXD5Cuk61Vuu7rXrqNbWXX2RalbjYArQYQ9QX7cMot5X9kpMmMngCHwQaMmYxqGtlKWcKKtTtZS1uihL05Jj_aNBspzILHHMwzHrPgMSc8ZfPd05G8HdE97_3jUQxXJwOWqj89JkPgsfBxPhUixkX_3yN_AfTzq1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441611022</pqid></control><display><type>article</type><title>Enhancement of neuroprotection, antioxidant capacity, and water-solubility of crocins by transglucosylation using dextransucrase under high hydrostatic pressure</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Mok, Il-Kyoon ; Nguyen, Thi Thanh Hanh ; Kim, Dong Hoi ; Lee, Jae Wook ; Lim, Sangyong ; Jung, Ho-yong ; Lim, Taeyun ; Pal, Kunal ; Kim, Doman</creator><creatorcontrib>Mok, Il-Kyoon ; Nguyen, Thi Thanh Hanh ; Kim, Dong Hoi ; Lee, Jae Wook ; Lim, Sangyong ; Jung, Ho-yong ; Lim, Taeyun ; Pal, Kunal ; Kim, Doman</creatorcontrib><description>[Display omitted]
•High hydrostatic pressure (HHP) technique was used to the transglucosylation reaction for the first time.•HHP technique improved transglucosylation yield 95% more at 100 MPa.•Novel α-glucosyl-(1→6)-trans-crocins was synthesized and showed better water solubility and antioxidant activities.•Novel α-glucosyl-(1→6)-trans-crocins had significantly higher neuroprotective effect on HT22 neuronal cells.
Crocin, one of the major carotenoid pigments of Crocus sativus (saffron), is responsible for antioxidant activity, neuroprotection, and the inhibition of tumor cell proliferation. In order to improve the functionality of crocin, α-glucosyl-(1→6)-trans-crocins (C–Gs) were synthesized using sucrose and dextransucrase from Leuconostoc mesenteroides. High hydrostatic pressure (HHP) technique was applied to the synthesis process of C–Gs in order to improve its transglucosylation yield. A 100 MPa HHP condition enhanced the production yield of C–Gs by 1.95 times compared to that of 0.1 MPa atmospheric pressure. Novel C–Gs were purified by HPLC, and their chemical structures were determined using NMR analysis. Novel C–Gs increased water solubility 4.6–5.7 times and antioxidant activity 1.5–2.6 times, respectively, compared to crocin, and their neuroprotections (cell viability 92.5–100.4 %) on HT22 mouse hippocampal neuronal cells were significantly higher than that of crocin (cell viability 84.6 %). This advanced neuroprotection of novel C–Gs could be highly associated with their enhanced antioxidant activity. Thus, the enhanced water solubility and functionality of novel C–Gs can induce better clinical efficacy of neuroprotection than trans-crocin.</description><identifier>ISSN: 0141-0229</identifier><identifier>EISSN: 1879-0909</identifier><identifier>DOI: 10.1016/j.enzmictec.2020.109630</identifier><identifier>PMID: 32912690</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Antioxidant ; Antioxidants - chemistry ; Antioxidants - metabolism ; Antioxidants - pharmacology ; Carotenoids - chemistry ; Carotenoids - metabolism ; Carotenoids - pharmacology ; Cell Line ; Crocin ; Dextransucrase ; Glucosyltransferases - metabolism ; Glycosylation ; High hydrostatic pressure ; Hydrostatic Pressure ; Leuconostoc mesenteroides - enzymology ; Mice ; Molecular Structure ; Neuroprotection ; Neuroprotection - drug effects ; Solubility ; Sucrose - metabolism ; Transglucosylation ; Water - chemistry</subject><ispartof>Enzyme and microbial technology, 2020-10, Vol.140, p.109630-109630, Article 109630</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-ea50cd1c52abdc49792ddace9490221d716a293f3f1d8a6177a6e1948cc69cc03</citedby><cites>FETCH-LOGICAL-c371t-ea50cd1c52abdc49792ddace9490221d716a293f3f1d8a6177a6e1948cc69cc03</cites><orcidid>0000-0001-6318-6736 ; 0000-0003-0389-3441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S014102292030123X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32912690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mok, Il-Kyoon</creatorcontrib><creatorcontrib>Nguyen, Thi Thanh Hanh</creatorcontrib><creatorcontrib>Kim, Dong Hoi</creatorcontrib><creatorcontrib>Lee, Jae Wook</creatorcontrib><creatorcontrib>Lim, Sangyong</creatorcontrib><creatorcontrib>Jung, Ho-yong</creatorcontrib><creatorcontrib>Lim, Taeyun</creatorcontrib><creatorcontrib>Pal, Kunal</creatorcontrib><creatorcontrib>Kim, Doman</creatorcontrib><title>Enhancement of neuroprotection, antioxidant capacity, and water-solubility of crocins by transglucosylation using dextransucrase under high hydrostatic pressure</title><title>Enzyme and microbial technology</title><addtitle>Enzyme Microb Technol</addtitle><description>[Display omitted]
•High hydrostatic pressure (HHP) technique was used to the transglucosylation reaction for the first time.•HHP technique improved transglucosylation yield 95% more at 100 MPa.•Novel α-glucosyl-(1→6)-trans-crocins was synthesized and showed better water solubility and antioxidant activities.•Novel α-glucosyl-(1→6)-trans-crocins had significantly higher neuroprotective effect on HT22 neuronal cells.
Crocin, one of the major carotenoid pigments of Crocus sativus (saffron), is responsible for antioxidant activity, neuroprotection, and the inhibition of tumor cell proliferation. In order to improve the functionality of crocin, α-glucosyl-(1→6)-trans-crocins (C–Gs) were synthesized using sucrose and dextransucrase from Leuconostoc mesenteroides. High hydrostatic pressure (HHP) technique was applied to the synthesis process of C–Gs in order to improve its transglucosylation yield. A 100 MPa HHP condition enhanced the production yield of C–Gs by 1.95 times compared to that of 0.1 MPa atmospheric pressure. Novel C–Gs were purified by HPLC, and their chemical structures were determined using NMR analysis. Novel C–Gs increased water solubility 4.6–5.7 times and antioxidant activity 1.5–2.6 times, respectively, compared to crocin, and their neuroprotections (cell viability 92.5–100.4 %) on HT22 mouse hippocampal neuronal cells were significantly higher than that of crocin (cell viability 84.6 %). This advanced neuroprotection of novel C–Gs could be highly associated with their enhanced antioxidant activity. Thus, the enhanced water solubility and functionality of novel C–Gs can induce better clinical efficacy of neuroprotection than trans-crocin.</description><subject>Animals</subject><subject>Antioxidant</subject><subject>Antioxidants - chemistry</subject><subject>Antioxidants - metabolism</subject><subject>Antioxidants - pharmacology</subject><subject>Carotenoids - chemistry</subject><subject>Carotenoids - metabolism</subject><subject>Carotenoids - pharmacology</subject><subject>Cell Line</subject><subject>Crocin</subject><subject>Dextransucrase</subject><subject>Glucosyltransferases - metabolism</subject><subject>Glycosylation</subject><subject>High hydrostatic pressure</subject><subject>Hydrostatic Pressure</subject><subject>Leuconostoc mesenteroides - enzymology</subject><subject>Mice</subject><subject>Molecular Structure</subject><subject>Neuroprotection</subject><subject>Neuroprotection - drug effects</subject><subject>Solubility</subject><subject>Sucrose - metabolism</subject><subject>Transglucosylation</subject><subject>Water - chemistry</subject><issn>0141-0229</issn><issn>1879-0909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS1ERZfCXwAfOZDFdtJkfayqUpAqcaFnyzue7HqV2IsnhoZfw0_F6ZZeOY30_OaNnj_G3kuxlkK2nw5rDL9HDxPCWgm1qLqtxQu2kptOV0IL_ZKthGxkJZTS5-w10UGIIjTiFTuvlZaq1WLF_tyEvQ2AI4aJx54HzCkeUyzBk4_hI7ehzAfvyuRgjxb8NC-q47_shKmiOOStH4q6rEOK4APx7cynZAPthgyR5sEuYTyTDzvu8OHxLUOyhDwHh4nv_W7P97NLkaZiBn5MSJQTvmFnvR0I3z7NC3b_-eb79Zfq7tvt1-uruwrqTk4V2ksBTsKlslsHje60cs4C6kaXD5Cuk61Vuu7rXrqNbWXX2RalbjYArQYQ9QX7cMot5X9kpMmMngCHwQaMmYxqGtlKWcKKtTtZS1uihL05Jj_aNBspzILHHMwzHrPgMSc8ZfPd05G8HdE97_3jUQxXJwOWqj89JkPgsfBxPhUixkX_3yN_AfTzq1c</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Mok, Il-Kyoon</creator><creator>Nguyen, Thi Thanh Hanh</creator><creator>Kim, Dong Hoi</creator><creator>Lee, Jae Wook</creator><creator>Lim, Sangyong</creator><creator>Jung, Ho-yong</creator><creator>Lim, Taeyun</creator><creator>Pal, Kunal</creator><creator>Kim, Doman</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6318-6736</orcidid><orcidid>https://orcid.org/0000-0003-0389-3441</orcidid></search><sort><creationdate>202010</creationdate><title>Enhancement of neuroprotection, antioxidant capacity, and water-solubility of crocins by transglucosylation using dextransucrase under high hydrostatic pressure</title><author>Mok, Il-Kyoon ; Nguyen, Thi Thanh Hanh ; Kim, Dong Hoi ; Lee, Jae Wook ; Lim, Sangyong ; Jung, Ho-yong ; Lim, Taeyun ; Pal, Kunal ; Kim, Doman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-ea50cd1c52abdc49792ddace9490221d716a293f3f1d8a6177a6e1948cc69cc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antioxidant</topic><topic>Antioxidants - chemistry</topic><topic>Antioxidants - metabolism</topic><topic>Antioxidants - pharmacology</topic><topic>Carotenoids - chemistry</topic><topic>Carotenoids - metabolism</topic><topic>Carotenoids - pharmacology</topic><topic>Cell Line</topic><topic>Crocin</topic><topic>Dextransucrase</topic><topic>Glucosyltransferases - metabolism</topic><topic>Glycosylation</topic><topic>High hydrostatic pressure</topic><topic>Hydrostatic Pressure</topic><topic>Leuconostoc mesenteroides - enzymology</topic><topic>Mice</topic><topic>Molecular Structure</topic><topic>Neuroprotection</topic><topic>Neuroprotection - drug effects</topic><topic>Solubility</topic><topic>Sucrose - metabolism</topic><topic>Transglucosylation</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mok, Il-Kyoon</creatorcontrib><creatorcontrib>Nguyen, Thi Thanh Hanh</creatorcontrib><creatorcontrib>Kim, Dong Hoi</creatorcontrib><creatorcontrib>Lee, Jae Wook</creatorcontrib><creatorcontrib>Lim, Sangyong</creatorcontrib><creatorcontrib>Jung, Ho-yong</creatorcontrib><creatorcontrib>Lim, Taeyun</creatorcontrib><creatorcontrib>Pal, Kunal</creatorcontrib><creatorcontrib>Kim, Doman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Enzyme and microbial technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mok, Il-Kyoon</au><au>Nguyen, Thi Thanh Hanh</au><au>Kim, Dong Hoi</au><au>Lee, Jae Wook</au><au>Lim, Sangyong</au><au>Jung, Ho-yong</au><au>Lim, Taeyun</au><au>Pal, Kunal</au><au>Kim, Doman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of neuroprotection, antioxidant capacity, and water-solubility of crocins by transglucosylation using dextransucrase under high hydrostatic pressure</atitle><jtitle>Enzyme and microbial technology</jtitle><addtitle>Enzyme Microb Technol</addtitle><date>2020-10</date><risdate>2020</risdate><volume>140</volume><spage>109630</spage><epage>109630</epage><pages>109630-109630</pages><artnum>109630</artnum><issn>0141-0229</issn><eissn>1879-0909</eissn><abstract>[Display omitted]
•High hydrostatic pressure (HHP) technique was used to the transglucosylation reaction for the first time.•HHP technique improved transglucosylation yield 95% more at 100 MPa.•Novel α-glucosyl-(1→6)-trans-crocins was synthesized and showed better water solubility and antioxidant activities.•Novel α-glucosyl-(1→6)-trans-crocins had significantly higher neuroprotective effect on HT22 neuronal cells.
Crocin, one of the major carotenoid pigments of Crocus sativus (saffron), is responsible for antioxidant activity, neuroprotection, and the inhibition of tumor cell proliferation. In order to improve the functionality of crocin, α-glucosyl-(1→6)-trans-crocins (C–Gs) were synthesized using sucrose and dextransucrase from Leuconostoc mesenteroides. High hydrostatic pressure (HHP) technique was applied to the synthesis process of C–Gs in order to improve its transglucosylation yield. A 100 MPa HHP condition enhanced the production yield of C–Gs by 1.95 times compared to that of 0.1 MPa atmospheric pressure. Novel C–Gs were purified by HPLC, and their chemical structures were determined using NMR analysis. Novel C–Gs increased water solubility 4.6–5.7 times and antioxidant activity 1.5–2.6 times, respectively, compared to crocin, and their neuroprotections (cell viability 92.5–100.4 %) on HT22 mouse hippocampal neuronal cells were significantly higher than that of crocin (cell viability 84.6 %). This advanced neuroprotection of novel C–Gs could be highly associated with their enhanced antioxidant activity. Thus, the enhanced water solubility and functionality of novel C–Gs can induce better clinical efficacy of neuroprotection than trans-crocin.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32912690</pmid><doi>10.1016/j.enzmictec.2020.109630</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6318-6736</orcidid><orcidid>https://orcid.org/0000-0003-0389-3441</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-0229 |
ispartof | Enzyme and microbial technology, 2020-10, Vol.140, p.109630-109630, Article 109630 |
issn | 0141-0229 1879-0909 |
language | eng |
recordid | cdi_proquest_miscellaneous_2441611022 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Antioxidant Antioxidants - chemistry Antioxidants - metabolism Antioxidants - pharmacology Carotenoids - chemistry Carotenoids - metabolism Carotenoids - pharmacology Cell Line Crocin Dextransucrase Glucosyltransferases - metabolism Glycosylation High hydrostatic pressure Hydrostatic Pressure Leuconostoc mesenteroides - enzymology Mice Molecular Structure Neuroprotection Neuroprotection - drug effects Solubility Sucrose - metabolism Transglucosylation Water - chemistry |
title | Enhancement of neuroprotection, antioxidant capacity, and water-solubility of crocins by transglucosylation using dextransucrase under high hydrostatic pressure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A51%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20neuroprotection,%20antioxidant%20capacity,%20and%20water-solubility%20of%20crocins%20by%20transglucosylation%20using%20dextransucrase%20under%20high%20hydrostatic%20pressure&rft.jtitle=Enzyme%20and%20microbial%20technology&rft.au=Mok,%20Il-Kyoon&rft.date=2020-10&rft.volume=140&rft.spage=109630&rft.epage=109630&rft.pages=109630-109630&rft.artnum=109630&rft.issn=0141-0229&rft.eissn=1879-0909&rft_id=info:doi/10.1016/j.enzmictec.2020.109630&rft_dat=%3Cproquest_cross%3E2441611022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441611022&rft_id=info:pmid/32912690&rft_els_id=S014102292030123X&rfr_iscdi=true |