Edge-State Wave Functions from Momentum-Conserving Tunneling Spectroscopy
We perform momentum-conserving tunneling spectroscopy using a GaAs cleaved-edge overgrowth quantum wire to investigate adjacent quantum Hall edge states. We use the lowest five wire modes with their distinct wave functions to probe each edge state and apply magnetic fields to modify the wave functio...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-08, Vol.125 (8), p.1-087701, Article 087701 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 087701 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | Physical review letters |
container_volume | 125 |
creator | Patlatiuk, T. Scheller, C. P. Hill, D. Tserkovnyak, Y. Egues, J. C. Barak, G. Yacoby, A. Pfeiffer, L. N. West, K. W. Zumbühl, D. M. |
description | We perform momentum-conserving tunneling spectroscopy using a GaAs cleaved-edge overgrowth quantum wire to investigate adjacent quantum Hall edge states. We use the lowest five wire modes with their distinct wave functions to probe each edge state and apply magnetic fields to modify the wave functions and their overlap. This reveals an intricate and rich tunneling conductance fan structure which is succinctly different for each of the wire modes. We self-consistently solve the Poisson-Schrödinger equations to simulate the spectroscopy, reproducing the striking fans in great detail, thus, confirming the calculations. Further, the model predicts hybridization between wire states and Landau levels, which is also confirmed experimentally. This establishes momentum-conserving tunneling spectroscopy as a powerful technique to probe edge state wave functions. |
doi_str_mv | 10.1103/PhysRevLett.125.087701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2441609067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441609067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-19dde50e053d28f65f4ab55c10a11010a3650a69fc7b433219ca26da40a86ea43</originalsourceid><addsrcrecordid>eNpdkFFLwzAQx4MoOKdfQQq--NJ5Sdq0fZSx6WCiuImPJUuvs6NNapIO9u3NmA_iy91x_Dju_yPklsKEUuAPb18H9477JXo_oSydQJ5lQM_IiEJWxBmlyTkZAXAaFwDZJblybgcAlIl8RBazaovxykuP0afcYzQftPKN0S6qremiF9Oh9kMXT8MK7b7R22g9aI3tcVr1qLw1Tpn-cE0uatk6vPntY_Ixn62nz_Hy9WkxfVzGiufMx7SoKkwBIeUVy2uR1oncpKmiIEOaULlIQYqiVtkm4ZzRQkkmKpmAzAXKhI_J_elub833gM6XXeMUtq3UaAZXsiShAgoQWUDv_qE7M1gdvgtU-IYxyvNAiROlQhJnsS5723TSHkoK5dFw-cdwGQyXJ8P8B_OGcXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438222138</pqid></control><display><type>article</type><title>Edge-State Wave Functions from Momentum-Conserving Tunneling Spectroscopy</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Patlatiuk, T. ; Scheller, C. P. ; Hill, D. ; Tserkovnyak, Y. ; Egues, J. C. ; Barak, G. ; Yacoby, A. ; Pfeiffer, L. N. ; West, K. W. ; Zumbühl, D. M.</creator><creatorcontrib>Patlatiuk, T. ; Scheller, C. P. ; Hill, D. ; Tserkovnyak, Y. ; Egues, J. C. ; Barak, G. ; Yacoby, A. ; Pfeiffer, L. N. ; West, K. W. ; Zumbühl, D. M.</creatorcontrib><description>We perform momentum-conserving tunneling spectroscopy using a GaAs cleaved-edge overgrowth quantum wire to investigate adjacent quantum Hall edge states. We use the lowest five wire modes with their distinct wave functions to probe each edge state and apply magnetic fields to modify the wave functions and their overlap. This reveals an intricate and rich tunneling conductance fan structure which is succinctly different for each of the wire modes. We self-consistently solve the Poisson-Schrödinger equations to simulate the spectroscopy, reproducing the striking fans in great detail, thus, confirming the calculations. Further, the model predicts hybridization between wire states and Landau levels, which is also confirmed experimentally. This establishes momentum-conserving tunneling spectroscopy as a powerful technique to probe edge state wave functions.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.125.087701</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Computer simulation ; Momentum ; Quantum wires ; Resistance ; Schrodinger equation ; Spectroscopy ; Spectrum analysis ; Wave functions</subject><ispartof>Physical review letters, 2020-08, Vol.125 (8), p.1-087701, Article 087701</ispartof><rights>Copyright American Physical Society Aug 21, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-19dde50e053d28f65f4ab55c10a11010a3650a69fc7b433219ca26da40a86ea43</citedby><cites>FETCH-LOGICAL-c382t-19dde50e053d28f65f4ab55c10a11010a3650a69fc7b433219ca26da40a86ea43</cites><orcidid>0000-0001-5831-633X ; 0000-0003-0856-3599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Patlatiuk, T.</creatorcontrib><creatorcontrib>Scheller, C. P.</creatorcontrib><creatorcontrib>Hill, D.</creatorcontrib><creatorcontrib>Tserkovnyak, Y.</creatorcontrib><creatorcontrib>Egues, J. C.</creatorcontrib><creatorcontrib>Barak, G.</creatorcontrib><creatorcontrib>Yacoby, A.</creatorcontrib><creatorcontrib>Pfeiffer, L. N.</creatorcontrib><creatorcontrib>West, K. W.</creatorcontrib><creatorcontrib>Zumbühl, D. M.</creatorcontrib><title>Edge-State Wave Functions from Momentum-Conserving Tunneling Spectroscopy</title><title>Physical review letters</title><description>We perform momentum-conserving tunneling spectroscopy using a GaAs cleaved-edge overgrowth quantum wire to investigate adjacent quantum Hall edge states. We use the lowest five wire modes with their distinct wave functions to probe each edge state and apply magnetic fields to modify the wave functions and their overlap. This reveals an intricate and rich tunneling conductance fan structure which is succinctly different for each of the wire modes. We self-consistently solve the Poisson-Schrödinger equations to simulate the spectroscopy, reproducing the striking fans in great detail, thus, confirming the calculations. Further, the model predicts hybridization between wire states and Landau levels, which is also confirmed experimentally. This establishes momentum-conserving tunneling spectroscopy as a powerful technique to probe edge state wave functions.</description><subject>Computer simulation</subject><subject>Momentum</subject><subject>Quantum wires</subject><subject>Resistance</subject><subject>Schrodinger equation</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Wave functions</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkFFLwzAQx4MoOKdfQQq--NJ5Sdq0fZSx6WCiuImPJUuvs6NNapIO9u3NmA_iy91x_Dju_yPklsKEUuAPb18H9477JXo_oSydQJ5lQM_IiEJWxBmlyTkZAXAaFwDZJblybgcAlIl8RBazaovxykuP0afcYzQftPKN0S6qremiF9Oh9kMXT8MK7b7R22g9aI3tcVr1qLw1Tpn-cE0uatk6vPntY_Ixn62nz_Hy9WkxfVzGiufMx7SoKkwBIeUVy2uR1oncpKmiIEOaULlIQYqiVtkm4ZzRQkkmKpmAzAXKhI_J_elub833gM6XXeMUtq3UaAZXsiShAgoQWUDv_qE7M1gdvgtU-IYxyvNAiROlQhJnsS5723TSHkoK5dFw-cdwGQyXJ8P8B_OGcXw</recordid><startdate>20200821</startdate><enddate>20200821</enddate><creator>Patlatiuk, T.</creator><creator>Scheller, C. P.</creator><creator>Hill, D.</creator><creator>Tserkovnyak, Y.</creator><creator>Egues, J. C.</creator><creator>Barak, G.</creator><creator>Yacoby, A.</creator><creator>Pfeiffer, L. N.</creator><creator>West, K. W.</creator><creator>Zumbühl, D. M.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5831-633X</orcidid><orcidid>https://orcid.org/0000-0003-0856-3599</orcidid></search><sort><creationdate>20200821</creationdate><title>Edge-State Wave Functions from Momentum-Conserving Tunneling Spectroscopy</title><author>Patlatiuk, T. ; Scheller, C. P. ; Hill, D. ; Tserkovnyak, Y. ; Egues, J. C. ; Barak, G. ; Yacoby, A. ; Pfeiffer, L. N. ; West, K. W. ; Zumbühl, D. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-19dde50e053d28f65f4ab55c10a11010a3650a69fc7b433219ca26da40a86ea43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Momentum</topic><topic>Quantum wires</topic><topic>Resistance</topic><topic>Schrodinger equation</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patlatiuk, T.</creatorcontrib><creatorcontrib>Scheller, C. P.</creatorcontrib><creatorcontrib>Hill, D.</creatorcontrib><creatorcontrib>Tserkovnyak, Y.</creatorcontrib><creatorcontrib>Egues, J. C.</creatorcontrib><creatorcontrib>Barak, G.</creatorcontrib><creatorcontrib>Yacoby, A.</creatorcontrib><creatorcontrib>Pfeiffer, L. N.</creatorcontrib><creatorcontrib>West, K. W.</creatorcontrib><creatorcontrib>Zumbühl, D. M.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patlatiuk, T.</au><au>Scheller, C. P.</au><au>Hill, D.</au><au>Tserkovnyak, Y.</au><au>Egues, J. C.</au><au>Barak, G.</au><au>Yacoby, A.</au><au>Pfeiffer, L. N.</au><au>West, K. W.</au><au>Zumbühl, D. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge-State Wave Functions from Momentum-Conserving Tunneling Spectroscopy</atitle><jtitle>Physical review letters</jtitle><date>2020-08-21</date><risdate>2020</risdate><volume>125</volume><issue>8</issue><spage>1</spage><epage>087701</epage><pages>1-087701</pages><artnum>087701</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We perform momentum-conserving tunneling spectroscopy using a GaAs cleaved-edge overgrowth quantum wire to investigate adjacent quantum Hall edge states. We use the lowest five wire modes with their distinct wave functions to probe each edge state and apply magnetic fields to modify the wave functions and their overlap. This reveals an intricate and rich tunneling conductance fan structure which is succinctly different for each of the wire modes. We self-consistently solve the Poisson-Schrödinger equations to simulate the spectroscopy, reproducing the striking fans in great detail, thus, confirming the calculations. Further, the model predicts hybridization between wire states and Landau levels, which is also confirmed experimentally. This establishes momentum-conserving tunneling spectroscopy as a powerful technique to probe edge state wave functions.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.125.087701</doi><orcidid>https://orcid.org/0000-0001-5831-633X</orcidid><orcidid>https://orcid.org/0000-0003-0856-3599</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2020-08, Vol.125 (8), p.1-087701, Article 087701 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2441609067 |
source | American Physical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Computer simulation Momentum Quantum wires Resistance Schrodinger equation Spectroscopy Spectrum analysis Wave functions |
title | Edge-State Wave Functions from Momentum-Conserving Tunneling Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge-State%20Wave%20Functions%20from%20Momentum-Conserving%20Tunneling%20Spectroscopy&rft.jtitle=Physical%20review%20letters&rft.au=Patlatiuk,%20T.&rft.date=2020-08-21&rft.volume=125&rft.issue=8&rft.spage=1&rft.epage=087701&rft.pages=1-087701&rft.artnum=087701&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.125.087701&rft_dat=%3Cproquest_cross%3E2441609067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438222138&rft_id=info:pmid/&rfr_iscdi=true |