Edge-State Wave Functions from Momentum-Conserving Tunneling Spectroscopy

We perform momentum-conserving tunneling spectroscopy using a GaAs cleaved-edge overgrowth quantum wire to investigate adjacent quantum Hall edge states. We use the lowest five wire modes with their distinct wave functions to probe each edge state and apply magnetic fields to modify the wave functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2020-08, Vol.125 (8), p.1-087701, Article 087701
Hauptverfasser: Patlatiuk, T., Scheller, C. P., Hill, D., Tserkovnyak, Y., Egues, J. C., Barak, G., Yacoby, A., Pfeiffer, L. N., West, K. W., Zumbühl, D. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 087701
container_issue 8
container_start_page 1
container_title Physical review letters
container_volume 125
creator Patlatiuk, T.
Scheller, C. P.
Hill, D.
Tserkovnyak, Y.
Egues, J. C.
Barak, G.
Yacoby, A.
Pfeiffer, L. N.
West, K. W.
Zumbühl, D. M.
description We perform momentum-conserving tunneling spectroscopy using a GaAs cleaved-edge overgrowth quantum wire to investigate adjacent quantum Hall edge states. We use the lowest five wire modes with their distinct wave functions to probe each edge state and apply magnetic fields to modify the wave functions and their overlap. This reveals an intricate and rich tunneling conductance fan structure which is succinctly different for each of the wire modes. We self-consistently solve the Poisson-Schrödinger equations to simulate the spectroscopy, reproducing the striking fans in great detail, thus, confirming the calculations. Further, the model predicts hybridization between wire states and Landau levels, which is also confirmed experimentally. This establishes momentum-conserving tunneling spectroscopy as a powerful technique to probe edge state wave functions.
doi_str_mv 10.1103/PhysRevLett.125.087701
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2441609067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441609067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-19dde50e053d28f65f4ab55c10a11010a3650a69fc7b433219ca26da40a86ea43</originalsourceid><addsrcrecordid>eNpdkFFLwzAQx4MoOKdfQQq--NJ5Sdq0fZSx6WCiuImPJUuvs6NNapIO9u3NmA_iy91x_Dju_yPklsKEUuAPb18H9477JXo_oSydQJ5lQM_IiEJWxBmlyTkZAXAaFwDZJblybgcAlIl8RBazaovxykuP0afcYzQftPKN0S6qremiF9Oh9kMXT8MK7b7R22g9aI3tcVr1qLw1Tpn-cE0uatk6vPntY_Ixn62nz_Hy9WkxfVzGiufMx7SoKkwBIeUVy2uR1oncpKmiIEOaULlIQYqiVtkm4ZzRQkkmKpmAzAXKhI_J_elub833gM6XXeMUtq3UaAZXsiShAgoQWUDv_qE7M1gdvgtU-IYxyvNAiROlQhJnsS5723TSHkoK5dFw-cdwGQyXJ8P8B_OGcXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438222138</pqid></control><display><type>article</type><title>Edge-State Wave Functions from Momentum-Conserving Tunneling Spectroscopy</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Patlatiuk, T. ; Scheller, C. P. ; Hill, D. ; Tserkovnyak, Y. ; Egues, J. C. ; Barak, G. ; Yacoby, A. ; Pfeiffer, L. N. ; West, K. W. ; Zumbühl, D. M.</creator><creatorcontrib>Patlatiuk, T. ; Scheller, C. P. ; Hill, D. ; Tserkovnyak, Y. ; Egues, J. C. ; Barak, G. ; Yacoby, A. ; Pfeiffer, L. N. ; West, K. W. ; Zumbühl, D. M.</creatorcontrib><description>We perform momentum-conserving tunneling spectroscopy using a GaAs cleaved-edge overgrowth quantum wire to investigate adjacent quantum Hall edge states. We use the lowest five wire modes with their distinct wave functions to probe each edge state and apply magnetic fields to modify the wave functions and their overlap. This reveals an intricate and rich tunneling conductance fan structure which is succinctly different for each of the wire modes. We self-consistently solve the Poisson-Schrödinger equations to simulate the spectroscopy, reproducing the striking fans in great detail, thus, confirming the calculations. Further, the model predicts hybridization between wire states and Landau levels, which is also confirmed experimentally. This establishes momentum-conserving tunneling spectroscopy as a powerful technique to probe edge state wave functions.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.125.087701</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Computer simulation ; Momentum ; Quantum wires ; Resistance ; Schrodinger equation ; Spectroscopy ; Spectrum analysis ; Wave functions</subject><ispartof>Physical review letters, 2020-08, Vol.125 (8), p.1-087701, Article 087701</ispartof><rights>Copyright American Physical Society Aug 21, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-19dde50e053d28f65f4ab55c10a11010a3650a69fc7b433219ca26da40a86ea43</citedby><cites>FETCH-LOGICAL-c382t-19dde50e053d28f65f4ab55c10a11010a3650a69fc7b433219ca26da40a86ea43</cites><orcidid>0000-0001-5831-633X ; 0000-0003-0856-3599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Patlatiuk, T.</creatorcontrib><creatorcontrib>Scheller, C. P.</creatorcontrib><creatorcontrib>Hill, D.</creatorcontrib><creatorcontrib>Tserkovnyak, Y.</creatorcontrib><creatorcontrib>Egues, J. C.</creatorcontrib><creatorcontrib>Barak, G.</creatorcontrib><creatorcontrib>Yacoby, A.</creatorcontrib><creatorcontrib>Pfeiffer, L. N.</creatorcontrib><creatorcontrib>West, K. W.</creatorcontrib><creatorcontrib>Zumbühl, D. M.</creatorcontrib><title>Edge-State Wave Functions from Momentum-Conserving Tunneling Spectroscopy</title><title>Physical review letters</title><description>We perform momentum-conserving tunneling spectroscopy using a GaAs cleaved-edge overgrowth quantum wire to investigate adjacent quantum Hall edge states. We use the lowest five wire modes with their distinct wave functions to probe each edge state and apply magnetic fields to modify the wave functions and their overlap. This reveals an intricate and rich tunneling conductance fan structure which is succinctly different for each of the wire modes. We self-consistently solve the Poisson-Schrödinger equations to simulate the spectroscopy, reproducing the striking fans in great detail, thus, confirming the calculations. Further, the model predicts hybridization between wire states and Landau levels, which is also confirmed experimentally. This establishes momentum-conserving tunneling spectroscopy as a powerful technique to probe edge state wave functions.</description><subject>Computer simulation</subject><subject>Momentum</subject><subject>Quantum wires</subject><subject>Resistance</subject><subject>Schrodinger equation</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Wave functions</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkFFLwzAQx4MoOKdfQQq--NJ5Sdq0fZSx6WCiuImPJUuvs6NNapIO9u3NmA_iy91x_Dju_yPklsKEUuAPb18H9477JXo_oSydQJ5lQM_IiEJWxBmlyTkZAXAaFwDZJblybgcAlIl8RBazaovxykuP0afcYzQftPKN0S6qremiF9Oh9kMXT8MK7b7R22g9aI3tcVr1qLw1Tpn-cE0uatk6vPntY_Ixn62nz_Hy9WkxfVzGiufMx7SoKkwBIeUVy2uR1oncpKmiIEOaULlIQYqiVtkm4ZzRQkkmKpmAzAXKhI_J_elub833gM6XXeMUtq3UaAZXsiShAgoQWUDv_qE7M1gdvgtU-IYxyvNAiROlQhJnsS5723TSHkoK5dFw-cdwGQyXJ8P8B_OGcXw</recordid><startdate>20200821</startdate><enddate>20200821</enddate><creator>Patlatiuk, T.</creator><creator>Scheller, C. P.</creator><creator>Hill, D.</creator><creator>Tserkovnyak, Y.</creator><creator>Egues, J. C.</creator><creator>Barak, G.</creator><creator>Yacoby, A.</creator><creator>Pfeiffer, L. N.</creator><creator>West, K. W.</creator><creator>Zumbühl, D. M.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5831-633X</orcidid><orcidid>https://orcid.org/0000-0003-0856-3599</orcidid></search><sort><creationdate>20200821</creationdate><title>Edge-State Wave Functions from Momentum-Conserving Tunneling Spectroscopy</title><author>Patlatiuk, T. ; Scheller, C. P. ; Hill, D. ; Tserkovnyak, Y. ; Egues, J. C. ; Barak, G. ; Yacoby, A. ; Pfeiffer, L. N. ; West, K. W. ; Zumbühl, D. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-19dde50e053d28f65f4ab55c10a11010a3650a69fc7b433219ca26da40a86ea43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Momentum</topic><topic>Quantum wires</topic><topic>Resistance</topic><topic>Schrodinger equation</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patlatiuk, T.</creatorcontrib><creatorcontrib>Scheller, C. P.</creatorcontrib><creatorcontrib>Hill, D.</creatorcontrib><creatorcontrib>Tserkovnyak, Y.</creatorcontrib><creatorcontrib>Egues, J. C.</creatorcontrib><creatorcontrib>Barak, G.</creatorcontrib><creatorcontrib>Yacoby, A.</creatorcontrib><creatorcontrib>Pfeiffer, L. N.</creatorcontrib><creatorcontrib>West, K. W.</creatorcontrib><creatorcontrib>Zumbühl, D. M.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patlatiuk, T.</au><au>Scheller, C. P.</au><au>Hill, D.</au><au>Tserkovnyak, Y.</au><au>Egues, J. C.</au><au>Barak, G.</au><au>Yacoby, A.</au><au>Pfeiffer, L. N.</au><au>West, K. W.</au><au>Zumbühl, D. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge-State Wave Functions from Momentum-Conserving Tunneling Spectroscopy</atitle><jtitle>Physical review letters</jtitle><date>2020-08-21</date><risdate>2020</risdate><volume>125</volume><issue>8</issue><spage>1</spage><epage>087701</epage><pages>1-087701</pages><artnum>087701</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We perform momentum-conserving tunneling spectroscopy using a GaAs cleaved-edge overgrowth quantum wire to investigate adjacent quantum Hall edge states. We use the lowest five wire modes with their distinct wave functions to probe each edge state and apply magnetic fields to modify the wave functions and their overlap. This reveals an intricate and rich tunneling conductance fan structure which is succinctly different for each of the wire modes. We self-consistently solve the Poisson-Schrödinger equations to simulate the spectroscopy, reproducing the striking fans in great detail, thus, confirming the calculations. Further, the model predicts hybridization between wire states and Landau levels, which is also confirmed experimentally. This establishes momentum-conserving tunneling spectroscopy as a powerful technique to probe edge state wave functions.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.125.087701</doi><orcidid>https://orcid.org/0000-0001-5831-633X</orcidid><orcidid>https://orcid.org/0000-0003-0856-3599</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2020-08, Vol.125 (8), p.1-087701, Article 087701
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2441609067
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects Computer simulation
Momentum
Quantum wires
Resistance
Schrodinger equation
Spectroscopy
Spectrum analysis
Wave functions
title Edge-State Wave Functions from Momentum-Conserving Tunneling Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge-State%20Wave%20Functions%20from%20Momentum-Conserving%20Tunneling%20Spectroscopy&rft.jtitle=Physical%20review%20letters&rft.au=Patlatiuk,%20T.&rft.date=2020-08-21&rft.volume=125&rft.issue=8&rft.spage=1&rft.epage=087701&rft.pages=1-087701&rft.artnum=087701&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.125.087701&rft_dat=%3Cproquest_cross%3E2441609067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438222138&rft_id=info:pmid/&rfr_iscdi=true