Nanoelectrochemical quantification of single-cell metabolism

At the most fundamental level, the behavior of tissue is governed by the activity of its single cells. A detailed examination of single-cell biology is necessary in order to gain a deeper understanding of disease progression. While single-cell genomics and transcriptomics are mature due to robust am...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2021-01, Vol.413 (1), p.17-24
Hauptverfasser: McCormick, Hadley K., Dick, Jeffrey E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 1
container_start_page 17
container_title Analytical and bioanalytical chemistry
container_volume 413
creator McCormick, Hadley K.
Dick, Jeffrey E.
description At the most fundamental level, the behavior of tissue is governed by the activity of its single cells. A detailed examination of single-cell biology is necessary in order to gain a deeper understanding of disease progression. While single-cell genomics and transcriptomics are mature due to robust amplification strategies, the metabolome is difficult to quantify. Nanoelectrochemical techniques stand poised to quantify single-cell metabolism as a result of the fabrication of nanoelectrodes, which allow one to make intracellular electrochemical measurements. This article is concerned with intracellular nanoelectrochemistry, focusing on the sensitive and selective quantification of various metabolites within a single, living cell. We will review the strong literature behind this field, discuss the potential deleterious effects of passing charge inside cells, and provide future outlooks for this promising avenue of inquiry. We also present a mathematical relationship based on Faraday’s Law and bulk electrolysis theory to examine the consumption of analyte within a cell due to passing charge at the nanotip. Graphical abstract
doi_str_mv 10.1007/s00216-020-02899-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2441608141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650847009</galeid><sourcerecordid>A650847009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-de45a4c9616807b019b3116a3650cefb5e623c9ea987c144c499077ffa1ea3943</originalsourceid><addsrcrecordid>eNp9kU9rFTEUxYMotla_gAt54MbNtPdmMskE3JSiVSh1065DJu_mmTKTtMnMot_ejK9_UERCyCX5ncu5OYy9RzhGAHVSADjKBjjU3Wvd6BfsECX2DZcdvHyqBT9gb0q5AcCuR_maHbRcY8d7fsg-X9qYaCQ35-R-0hScHTd3i41z8LWeQ4qb5DclxN1IjaNx3Ew02yGNoUxv2Stvx0LvHs4jdv31y9XZt-bix_n3s9OLxgml52ZLorPCaYmyBzUA6qFFlLatLh35oSPJW6fJ6l45FMIJrUEp7y2SbbVoj9infd_bnO4WKrOZQlm92EhpKYYLgRJ6FFjRj3-hN2nJsbqrlJJKgML-mdrZkUyIPs3ZurWpOa2meqEAdKWO_0HVtV3_KUXyod7_IeB7gcuplEze3OYw2XxvEMwamdlHZmpk5ndkZhV9eHC8DBNtnySPGVWg3QOlPsUd5eeR_tP2FzZUnmE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476740718</pqid></control><display><type>article</type><title>Nanoelectrochemical quantification of single-cell metabolism</title><source>Springer journals</source><creator>McCormick, Hadley K. ; Dick, Jeffrey E.</creator><creatorcontrib>McCormick, Hadley K. ; Dick, Jeffrey E.</creatorcontrib><description>At the most fundamental level, the behavior of tissue is governed by the activity of its single cells. A detailed examination of single-cell biology is necessary in order to gain a deeper understanding of disease progression. While single-cell genomics and transcriptomics are mature due to robust amplification strategies, the metabolome is difficult to quantify. Nanoelectrochemical techniques stand poised to quantify single-cell metabolism as a result of the fabrication of nanoelectrodes, which allow one to make intracellular electrochemical measurements. This article is concerned with intracellular nanoelectrochemistry, focusing on the sensitive and selective quantification of various metabolites within a single, living cell. We will review the strong literature behind this field, discuss the potential deleterious effects of passing charge inside cells, and provide future outlooks for this promising avenue of inquiry. We also present a mathematical relationship based on Faraday’s Law and bulk electrolysis theory to examine the consumption of analyte within a cell due to passing charge at the nanotip. Graphical abstract</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-020-02899-9</identifier><identifier>PMID: 32915282</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Analytical Chemistry ; Biochemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Electrochemical analysis ; Electrochemistry ; Electrolysis ; Electrolytic cells ; Fabrication ; Food Science ; Intracellular ; Laboratory Medicine ; Literature reviews ; Metabolism ; Metabolites ; Monitoring/Environmental Analysis ; Nanotechnology ; Physiological aspects ; Robustness (mathematics) ; Technology application ; Trends ; Unicellular organisms</subject><ispartof>Analytical and bioanalytical chemistry, 2021-01, Vol.413 (1), p.17-24</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-de45a4c9616807b019b3116a3650cefb5e623c9ea987c144c499077ffa1ea3943</citedby><cites>FETCH-LOGICAL-c479t-de45a4c9616807b019b3116a3650cefb5e623c9ea987c144c499077ffa1ea3943</cites><orcidid>0000-0002-4538-9705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-020-02899-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-020-02899-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32915282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCormick, Hadley K.</creatorcontrib><creatorcontrib>Dick, Jeffrey E.</creatorcontrib><title>Nanoelectrochemical quantification of single-cell metabolism</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>At the most fundamental level, the behavior of tissue is governed by the activity of its single cells. A detailed examination of single-cell biology is necessary in order to gain a deeper understanding of disease progression. While single-cell genomics and transcriptomics are mature due to robust amplification strategies, the metabolome is difficult to quantify. Nanoelectrochemical techniques stand poised to quantify single-cell metabolism as a result of the fabrication of nanoelectrodes, which allow one to make intracellular electrochemical measurements. This article is concerned with intracellular nanoelectrochemistry, focusing on the sensitive and selective quantification of various metabolites within a single, living cell. We will review the strong literature behind this field, discuss the potential deleterious effects of passing charge inside cells, and provide future outlooks for this promising avenue of inquiry. We also present a mathematical relationship based on Faraday’s Law and bulk electrolysis theory to examine the consumption of analyte within a cell due to passing charge at the nanotip. Graphical abstract</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Fabrication</subject><subject>Food Science</subject><subject>Intracellular</subject><subject>Laboratory Medicine</subject><subject>Literature reviews</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Monitoring/Environmental Analysis</subject><subject>Nanotechnology</subject><subject>Physiological aspects</subject><subject>Robustness (mathematics)</subject><subject>Technology application</subject><subject>Trends</subject><subject>Unicellular organisms</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU9rFTEUxYMotla_gAt54MbNtPdmMskE3JSiVSh1065DJu_mmTKTtMnMot_ejK9_UERCyCX5ncu5OYy9RzhGAHVSADjKBjjU3Wvd6BfsECX2DZcdvHyqBT9gb0q5AcCuR_maHbRcY8d7fsg-X9qYaCQ35-R-0hScHTd3i41z8LWeQ4qb5DclxN1IjaNx3Ew02yGNoUxv2Stvx0LvHs4jdv31y9XZt-bix_n3s9OLxgml52ZLorPCaYmyBzUA6qFFlLatLh35oSPJW6fJ6l45FMIJrUEp7y2SbbVoj9infd_bnO4WKrOZQlm92EhpKYYLgRJ6FFjRj3-hN2nJsbqrlJJKgML-mdrZkUyIPs3ZurWpOa2meqEAdKWO_0HVtV3_KUXyod7_IeB7gcuplEze3OYw2XxvEMwamdlHZmpk5ndkZhV9eHC8DBNtnySPGVWg3QOlPsUd5eeR_tP2FzZUnmE</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>McCormick, Hadley K.</creator><creator>Dick, Jeffrey E.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4538-9705</orcidid></search><sort><creationdate>20210101</creationdate><title>Nanoelectrochemical quantification of single-cell metabolism</title><author>McCormick, Hadley K. ; Dick, Jeffrey E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-de45a4c9616807b019b3116a3650cefb5e623c9ea987c144c499077ffa1ea3943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Fabrication</topic><topic>Food Science</topic><topic>Intracellular</topic><topic>Laboratory Medicine</topic><topic>Literature reviews</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Monitoring/Environmental Analysis</topic><topic>Nanotechnology</topic><topic>Physiological aspects</topic><topic>Robustness (mathematics)</topic><topic>Technology application</topic><topic>Trends</topic><topic>Unicellular organisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCormick, Hadley K.</creatorcontrib><creatorcontrib>Dick, Jeffrey E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCormick, Hadley K.</au><au>Dick, Jeffrey E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoelectrochemical quantification of single-cell metabolism</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>413</volume><issue>1</issue><spage>17</spage><epage>24</epage><pages>17-24</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>At the most fundamental level, the behavior of tissue is governed by the activity of its single cells. A detailed examination of single-cell biology is necessary in order to gain a deeper understanding of disease progression. While single-cell genomics and transcriptomics are mature due to robust amplification strategies, the metabolome is difficult to quantify. Nanoelectrochemical techniques stand poised to quantify single-cell metabolism as a result of the fabrication of nanoelectrodes, which allow one to make intracellular electrochemical measurements. This article is concerned with intracellular nanoelectrochemistry, focusing on the sensitive and selective quantification of various metabolites within a single, living cell. We will review the strong literature behind this field, discuss the potential deleterious effects of passing charge inside cells, and provide future outlooks for this promising avenue of inquiry. We also present a mathematical relationship based on Faraday’s Law and bulk electrolysis theory to examine the consumption of analyte within a cell due to passing charge at the nanotip. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32915282</pmid><doi>10.1007/s00216-020-02899-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4538-9705</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2021-01, Vol.413 (1), p.17-24
issn 1618-2642
1618-2650
language eng
recordid cdi_proquest_miscellaneous_2441608141
source Springer journals
subjects Analysis
Analytical Chemistry
Biochemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Electrochemical analysis
Electrochemistry
Electrolysis
Electrolytic cells
Fabrication
Food Science
Intracellular
Laboratory Medicine
Literature reviews
Metabolism
Metabolites
Monitoring/Environmental Analysis
Nanotechnology
Physiological aspects
Robustness (mathematics)
Technology application
Trends
Unicellular organisms
title Nanoelectrochemical quantification of single-cell metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoelectrochemical%20quantification%20of%20single-cell%20metabolism&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=McCormick,%20Hadley%20K.&rft.date=2021-01-01&rft.volume=413&rft.issue=1&rft.spage=17&rft.epage=24&rft.pages=17-24&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-020-02899-9&rft_dat=%3Cgale_proqu%3EA650847009%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476740718&rft_id=info:pmid/32915282&rft_galeid=A650847009&rfr_iscdi=true