Dominating the maximum likelihood estimator in predicting reliability
The reliability of a series system with n independent components are estimated. The failure distributions of these components are assumed to be Weibull with parameters α i's and β i's. It is assumed that the shape parameters β i's are known. This reduces the reliability of the system...
Gespeichert in:
Veröffentlicht in: | Microelectronics and reliability 1987, Vol.27 (2), p.345-350 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 350 |
---|---|
container_issue | 2 |
container_start_page | 345 |
container_title | Microelectronics and reliability |
container_volume | 27 |
creator | Jaisingh, Lloyd R. |
description | The reliability of a series system with n independent components are estimated. The failure distributions of these components are assumed to be Weibull with parameters
α
i's and
β
i's. It is assumed that the shape parameters
β
i's are known. This reduces the reliability of the system to be a function of
α = (
α
1, ...,
α
n), ξ(α), say. The MLE of ξ(α) is derived and an estimator which dominates the MLE in terms of risk, under squared error loss, is also derived. The predicted reliability using these two estimators are computed and compared. |
doi_str_mv | 10.1016/0026-2714(87)90188-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24413348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0026271487901880</els_id><sourcerecordid>24413348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-267b9d4da22acd9bc44e5b41e930ee0bd20c1137880da023e9b81ded677796983</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvjDyhSIARFYMYxsd0goWV5SEg0INFZjj0LhjwWO4vYvydhESXVNOfemTmMHSCcImB5BsDLnEsUx0qeaEClcthgE1SS51rg8yab_CHbbCelNwCQgDhhs6uuCa3tQ_uS9a-UNfYrNMsmq8M71eG163xGqQ-N7buYhTZbRPLB_eBxAGwV6tCv9tjW3NaJ9n_nLnu6nj1Ob_P7h5u76eV97gos-pyXstJeeMu5dV5XTgg6rwSSLoAIKs_BIRZSKfAWeEG6UujJl1JKXWpV7LKjde8idh_L4TDThOSorm1L3TIZLgQWhRhBsQZd7FKKNDeLODwRVwbBjM7MKMSMQoyS5seZgSF2-Ntvk7P1PNrWhfSXVVxpjSN2scZo-PUzUDTJBWrdoCaS643vwv97vgHcrYA_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24413348</pqid></control><display><type>article</type><title>Dominating the maximum likelihood estimator in predicting reliability</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jaisingh, Lloyd R.</creator><creatorcontrib>Jaisingh, Lloyd R.</creatorcontrib><description>The reliability of a series system with n independent components are estimated. The failure distributions of these components are assumed to be Weibull with parameters
α
i's and
β
i's. It is assumed that the shape parameters
β
i's are known. This reduces the reliability of the system to be a function of
α = (
α
1, ...,
α
n), ξ(α), say. The MLE of ξ(α) is derived and an estimator which dominates the MLE in terms of risk, under squared error loss, is also derived. The predicted reliability using these two estimators are computed and compared.</description><identifier>ISSN: 0026-2714</identifier><identifier>EISSN: 1872-941X</identifier><identifier>DOI: 10.1016/0026-2714(87)90188-0</identifier><identifier>CODEN: MCRLAS</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Exact sciences and technology ; Operational research and scientific management ; Operational research. Management science ; Reliability theory. Replacement problems</subject><ispartof>Microelectronics and reliability, 1987, Vol.27 (2), p.345-350</ispartof><rights>1987</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c313t-267b9d4da22acd9bc44e5b41e930ee0bd20c1137880da023e9b81ded677796983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0026-2714(87)90188-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4022,27922,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8289910$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaisingh, Lloyd R.</creatorcontrib><title>Dominating the maximum likelihood estimator in predicting reliability</title><title>Microelectronics and reliability</title><description>The reliability of a series system with n independent components are estimated. The failure distributions of these components are assumed to be Weibull with parameters
α
i's and
β
i's. It is assumed that the shape parameters
β
i's are known. This reduces the reliability of the system to be a function of
α = (
α
1, ...,
α
n), ξ(α), say. The MLE of ξ(α) is derived and an estimator which dominates the MLE in terms of risk, under squared error loss, is also derived. The predicted reliability using these two estimators are computed and compared.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Reliability theory. Replacement problems</subject><issn>0026-2714</issn><issn>1872-941X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvjDyhSIARFYMYxsd0goWV5SEg0INFZjj0LhjwWO4vYvydhESXVNOfemTmMHSCcImB5BsDLnEsUx0qeaEClcthgE1SS51rg8yab_CHbbCelNwCQgDhhs6uuCa3tQ_uS9a-UNfYrNMsmq8M71eG163xGqQ-N7buYhTZbRPLB_eBxAGwV6tCv9tjW3NaJ9n_nLnu6nj1Ob_P7h5u76eV97gos-pyXstJeeMu5dV5XTgg6rwSSLoAIKs_BIRZSKfAWeEG6UujJl1JKXWpV7LKjde8idh_L4TDThOSorm1L3TIZLgQWhRhBsQZd7FKKNDeLODwRVwbBjM7MKMSMQoyS5seZgSF2-Ntvk7P1PNrWhfSXVVxpjSN2scZo-PUzUDTJBWrdoCaS643vwv97vgHcrYA_</recordid><startdate>1987</startdate><enddate>1987</enddate><creator>Jaisingh, Lloyd R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1987</creationdate><title>Dominating the maximum likelihood estimator in predicting reliability</title><author>Jaisingh, Lloyd R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-267b9d4da22acd9bc44e5b41e930ee0bd20c1137880da023e9b81ded677796983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Reliability theory. Replacement problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaisingh, Lloyd R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Microelectronics and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaisingh, Lloyd R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dominating the maximum likelihood estimator in predicting reliability</atitle><jtitle>Microelectronics and reliability</jtitle><date>1987</date><risdate>1987</risdate><volume>27</volume><issue>2</issue><spage>345</spage><epage>350</epage><pages>345-350</pages><issn>0026-2714</issn><eissn>1872-941X</eissn><coden>MCRLAS</coden><abstract>The reliability of a series system with n independent components are estimated. The failure distributions of these components are assumed to be Weibull with parameters
α
i's and
β
i's. It is assumed that the shape parameters
β
i's are known. This reduces the reliability of the system to be a function of
α = (
α
1, ...,
α
n), ξ(α), say. The MLE of ξ(α) is derived and an estimator which dominates the MLE in terms of risk, under squared error loss, is also derived. The predicted reliability using these two estimators are computed and compared.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0026-2714(87)90188-0</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-2714 |
ispartof | Microelectronics and reliability, 1987, Vol.27 (2), p.345-350 |
issn | 0026-2714 1872-941X |
language | eng |
recordid | cdi_proquest_miscellaneous_24413348 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Exact sciences and technology Operational research and scientific management Operational research. Management science Reliability theory. Replacement problems |
title | Dominating the maximum likelihood estimator in predicting reliability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A27%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dominating%20the%20maximum%20likelihood%20estimator%20in%20predicting%20reliability&rft.jtitle=Microelectronics%20and%20reliability&rft.au=Jaisingh,%20Lloyd%20R.&rft.date=1987&rft.volume=27&rft.issue=2&rft.spage=345&rft.epage=350&rft.pages=345-350&rft.issn=0026-2714&rft.eissn=1872-941X&rft.coden=MCRLAS&rft_id=info:doi/10.1016/0026-2714(87)90188-0&rft_dat=%3Cproquest_cross%3E24413348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24413348&rft_id=info:pmid/&rft_els_id=0026271487901880&rfr_iscdi=true |