Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing

Engineered point defects in two-dimensional (2D) materials offer an attractive platform for solid-state devices that exploit tailored optoelectronic, quantum emission, and resistive properties. Naturally occurring defects are also unavoidably important contributors to material properties and perform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-10, Vol.14 (10), p.13406-13417
Hauptverfasser: Frey, Nathan C, Akinwande, Deji, Jariwala, Deep, Shenoy, Vivek B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13417
container_issue 10
container_start_page 13406
container_title ACS nano
container_volume 14
creator Frey, Nathan C
Akinwande, Deji
Jariwala, Deep
Shenoy, Vivek B
description Engineered point defects in two-dimensional (2D) materials offer an attractive platform for solid-state devices that exploit tailored optoelectronic, quantum emission, and resistive properties. Naturally occurring defects are also unavoidably important contributors to material properties and performance. The immense variety and complexity of possible defects make it challenging to experimentally control, probe, or understand atomic-scale defect-property relationships. Here, we develop an approach based on deep transfer learning, machine learning, and first-principles calculations to rapidly predict key properties of point defects in 2D materials. We use physics-informed featurization to generate a minimal description of defect structures and present a general picture of defects across materials systems. We identify over one hundred promising, unexplored dopant defect structures in layered metal chalcogenides, hexagonal nitrides, and metal halides. These defects are prime candidates for quantum emission, resistive switching, and neuromorphic computing.
doi_str_mv 10.1021/acsnano.0c05267
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2441282800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441282800</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-3e338f9e6783db4414ff96fb91c91cbe4c15c0c97e71a129afc8f943e3f1d4c73</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrZ695ijItsm-snuUtmqh1QoK3kI2O2lTdpOaZA_-eyMt3oSBmeF7DPMhdEvJhJKUToX0Rhg7IZIUacnO0IjWWZmQqvw8_5sLeomuvN8TUrCKlSMU1kLutAG8AuGMNttkYUTTQYvn4PXWYKvwxmoT4q5ABo-1wekcr0UAp0XnsbIOvw3ChKHHwrT4BQZne-sOOy3x0kS4F0FbgzfOSvA-3rhGFypK4ebUx-jjcfE-e05Wr0_L2cMqERkrQ5JBllWqhpJVWdvkOc2VqkvV1FTGaiCXtJBE1gwYFTSthZKRnkeZom0uWTZGd0ffg7NfA_jAe-0ldJ0wYAfP0-iZVmlFSKROj1TprPcOFD843Qv3zSnhv_nyU778lG9U3B8VEeB7OzgTX_mX_QNT5X-5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441282800</pqid></control><display><type>article</type><title>Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing</title><source>American Chemical Society Journals</source><creator>Frey, Nathan C ; Akinwande, Deji ; Jariwala, Deep ; Shenoy, Vivek B</creator><creatorcontrib>Frey, Nathan C ; Akinwande, Deji ; Jariwala, Deep ; Shenoy, Vivek B</creatorcontrib><description>Engineered point defects in two-dimensional (2D) materials offer an attractive platform for solid-state devices that exploit tailored optoelectronic, quantum emission, and resistive properties. Naturally occurring defects are also unavoidably important contributors to material properties and performance. The immense variety and complexity of possible defects make it challenging to experimentally control, probe, or understand atomic-scale defect-property relationships. Here, we develop an approach based on deep transfer learning, machine learning, and first-principles calculations to rapidly predict key properties of point defects in 2D materials. We use physics-informed featurization to generate a minimal description of defect structures and present a general picture of defects across materials systems. We identify over one hundred promising, unexplored dopant defect structures in layered metal chalcogenides, hexagonal nitrides, and metal halides. These defects are prime candidates for quantum emission, resistive switching, and neuromorphic computing.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c05267</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2020-10, Vol.14 (10), p.13406-13417</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-3e338f9e6783db4414ff96fb91c91cbe4c15c0c97e71a129afc8f943e3f1d4c73</citedby><cites>FETCH-LOGICAL-a376t-3e338f9e6783db4414ff96fb91c91cbe4c15c0c97e71a129afc8f943e3f1d4c73</cites><orcidid>0000-0001-5291-6131 ; 0000-0002-3570-8768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c05267$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c05267$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Frey, Nathan C</creatorcontrib><creatorcontrib>Akinwande, Deji</creatorcontrib><creatorcontrib>Jariwala, Deep</creatorcontrib><creatorcontrib>Shenoy, Vivek B</creatorcontrib><title>Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Engineered point defects in two-dimensional (2D) materials offer an attractive platform for solid-state devices that exploit tailored optoelectronic, quantum emission, and resistive properties. Naturally occurring defects are also unavoidably important contributors to material properties and performance. The immense variety and complexity of possible defects make it challenging to experimentally control, probe, or understand atomic-scale defect-property relationships. Here, we develop an approach based on deep transfer learning, machine learning, and first-principles calculations to rapidly predict key properties of point defects in 2D materials. We use physics-informed featurization to generate a minimal description of defect structures and present a general picture of defects across materials systems. We identify over one hundred promising, unexplored dopant defect structures in layered metal chalcogenides, hexagonal nitrides, and metal halides. These defects are prime candidates for quantum emission, resistive switching, and neuromorphic computing.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrZ695ijItsm-snuUtmqh1QoK3kI2O2lTdpOaZA_-eyMt3oSBmeF7DPMhdEvJhJKUToX0Rhg7IZIUacnO0IjWWZmQqvw8_5sLeomuvN8TUrCKlSMU1kLutAG8AuGMNttkYUTTQYvn4PXWYKvwxmoT4q5ABo-1wekcr0UAp0XnsbIOvw3ChKHHwrT4BQZne-sOOy3x0kS4F0FbgzfOSvA-3rhGFypK4ebUx-jjcfE-e05Wr0_L2cMqERkrQ5JBllWqhpJVWdvkOc2VqkvV1FTGaiCXtJBE1gwYFTSthZKRnkeZom0uWTZGd0ffg7NfA_jAe-0ldJ0wYAfP0-iZVmlFSKROj1TprPcOFD843Qv3zSnhv_nyU778lG9U3B8VEeB7OzgTX_mX_QNT5X-5</recordid><startdate>20201027</startdate><enddate>20201027</enddate><creator>Frey, Nathan C</creator><creator>Akinwande, Deji</creator><creator>Jariwala, Deep</creator><creator>Shenoy, Vivek B</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5291-6131</orcidid><orcidid>https://orcid.org/0000-0002-3570-8768</orcidid></search><sort><creationdate>20201027</creationdate><title>Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing</title><author>Frey, Nathan C ; Akinwande, Deji ; Jariwala, Deep ; Shenoy, Vivek B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-3e338f9e6783db4414ff96fb91c91cbe4c15c0c97e71a129afc8f943e3f1d4c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frey, Nathan C</creatorcontrib><creatorcontrib>Akinwande, Deji</creatorcontrib><creatorcontrib>Jariwala, Deep</creatorcontrib><creatorcontrib>Shenoy, Vivek B</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frey, Nathan C</au><au>Akinwande, Deji</au><au>Jariwala, Deep</au><au>Shenoy, Vivek B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-10-27</date><risdate>2020</risdate><volume>14</volume><issue>10</issue><spage>13406</spage><epage>13417</epage><pages>13406-13417</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Engineered point defects in two-dimensional (2D) materials offer an attractive platform for solid-state devices that exploit tailored optoelectronic, quantum emission, and resistive properties. Naturally occurring defects are also unavoidably important contributors to material properties and performance. The immense variety and complexity of possible defects make it challenging to experimentally control, probe, or understand atomic-scale defect-property relationships. Here, we develop an approach based on deep transfer learning, machine learning, and first-principles calculations to rapidly predict key properties of point defects in 2D materials. We use physics-informed featurization to generate a minimal description of defect structures and present a general picture of defects across materials systems. We identify over one hundred promising, unexplored dopant defect structures in layered metal chalcogenides, hexagonal nitrides, and metal halides. These defects are prime candidates for quantum emission, resistive switching, and neuromorphic computing.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.0c05267</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5291-6131</orcidid><orcidid>https://orcid.org/0000-0002-3570-8768</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2020-10, Vol.14 (10), p.13406-13417
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2441282800
source American Chemical Society Journals
title Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A34%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-Enabled%20Design%20of%20Point%20Defects%20in%202D%20Materials%20for%20Quantum%20and%20Neuromorphic%20Information%20Processing&rft.jtitle=ACS%20nano&rft.au=Frey,%20Nathan%20C&rft.date=2020-10-27&rft.volume=14&rft.issue=10&rft.spage=13406&rft.epage=13417&rft.pages=13406-13417&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c05267&rft_dat=%3Cproquest_cross%3E2441282800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441282800&rft_id=info:pmid/&rfr_iscdi=true