Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing
Engineered point defects in two-dimensional (2D) materials offer an attractive platform for solid-state devices that exploit tailored optoelectronic, quantum emission, and resistive properties. Naturally occurring defects are also unavoidably important contributors to material properties and perform...
Gespeichert in:
Veröffentlicht in: | ACS nano 2020-10, Vol.14 (10), p.13406-13417 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13417 |
---|---|
container_issue | 10 |
container_start_page | 13406 |
container_title | ACS nano |
container_volume | 14 |
creator | Frey, Nathan C Akinwande, Deji Jariwala, Deep Shenoy, Vivek B |
description | Engineered point defects in two-dimensional (2D) materials offer an attractive platform for solid-state devices that exploit tailored optoelectronic, quantum emission, and resistive properties. Naturally occurring defects are also unavoidably important contributors to material properties and performance. The immense variety and complexity of possible defects make it challenging to experimentally control, probe, or understand atomic-scale defect-property relationships. Here, we develop an approach based on deep transfer learning, machine learning, and first-principles calculations to rapidly predict key properties of point defects in 2D materials. We use physics-informed featurization to generate a minimal description of defect structures and present a general picture of defects across materials systems. We identify over one hundred promising, unexplored dopant defect structures in layered metal chalcogenides, hexagonal nitrides, and metal halides. These defects are prime candidates for quantum emission, resistive switching, and neuromorphic computing. |
doi_str_mv | 10.1021/acsnano.0c05267 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2441282800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441282800</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-3e338f9e6783db4414ff96fb91c91cbe4c15c0c97e71a129afc8f943e3f1d4c73</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrZ695ijItsm-snuUtmqh1QoK3kI2O2lTdpOaZA_-eyMt3oSBmeF7DPMhdEvJhJKUToX0Rhg7IZIUacnO0IjWWZmQqvw8_5sLeomuvN8TUrCKlSMU1kLutAG8AuGMNttkYUTTQYvn4PXWYKvwxmoT4q5ABo-1wekcr0UAp0XnsbIOvw3ChKHHwrT4BQZne-sOOy3x0kS4F0FbgzfOSvA-3rhGFypK4ebUx-jjcfE-e05Wr0_L2cMqERkrQ5JBllWqhpJVWdvkOc2VqkvV1FTGaiCXtJBE1gwYFTSthZKRnkeZom0uWTZGd0ffg7NfA_jAe-0ldJ0wYAfP0-iZVmlFSKROj1TprPcOFD843Qv3zSnhv_nyU778lG9U3B8VEeB7OzgTX_mX_QNT5X-5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441282800</pqid></control><display><type>article</type><title>Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing</title><source>American Chemical Society Journals</source><creator>Frey, Nathan C ; Akinwande, Deji ; Jariwala, Deep ; Shenoy, Vivek B</creator><creatorcontrib>Frey, Nathan C ; Akinwande, Deji ; Jariwala, Deep ; Shenoy, Vivek B</creatorcontrib><description>Engineered point defects in two-dimensional (2D) materials offer an attractive platform for solid-state devices that exploit tailored optoelectronic, quantum emission, and resistive properties. Naturally occurring defects are also unavoidably important contributors to material properties and performance. The immense variety and complexity of possible defects make it challenging to experimentally control, probe, or understand atomic-scale defect-property relationships. Here, we develop an approach based on deep transfer learning, machine learning, and first-principles calculations to rapidly predict key properties of point defects in 2D materials. We use physics-informed featurization to generate a minimal description of defect structures and present a general picture of defects across materials systems. We identify over one hundred promising, unexplored dopant defect structures in layered metal chalcogenides, hexagonal nitrides, and metal halides. These defects are prime candidates for quantum emission, resistive switching, and neuromorphic computing.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c05267</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2020-10, Vol.14 (10), p.13406-13417</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-3e338f9e6783db4414ff96fb91c91cbe4c15c0c97e71a129afc8f943e3f1d4c73</citedby><cites>FETCH-LOGICAL-a376t-3e338f9e6783db4414ff96fb91c91cbe4c15c0c97e71a129afc8f943e3f1d4c73</cites><orcidid>0000-0001-5291-6131 ; 0000-0002-3570-8768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c05267$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c05267$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Frey, Nathan C</creatorcontrib><creatorcontrib>Akinwande, Deji</creatorcontrib><creatorcontrib>Jariwala, Deep</creatorcontrib><creatorcontrib>Shenoy, Vivek B</creatorcontrib><title>Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Engineered point defects in two-dimensional (2D) materials offer an attractive platform for solid-state devices that exploit tailored optoelectronic, quantum emission, and resistive properties. Naturally occurring defects are also unavoidably important contributors to material properties and performance. The immense variety and complexity of possible defects make it challenging to experimentally control, probe, or understand atomic-scale defect-property relationships. Here, we develop an approach based on deep transfer learning, machine learning, and first-principles calculations to rapidly predict key properties of point defects in 2D materials. We use physics-informed featurization to generate a minimal description of defect structures and present a general picture of defects across materials systems. We identify over one hundred promising, unexplored dopant defect structures in layered metal chalcogenides, hexagonal nitrides, and metal halides. These defects are prime candidates for quantum emission, resistive switching, and neuromorphic computing.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrZ695ijItsm-snuUtmqh1QoK3kI2O2lTdpOaZA_-eyMt3oSBmeF7DPMhdEvJhJKUToX0Rhg7IZIUacnO0IjWWZmQqvw8_5sLeomuvN8TUrCKlSMU1kLutAG8AuGMNttkYUTTQYvn4PXWYKvwxmoT4q5ABo-1wekcr0UAp0XnsbIOvw3ChKHHwrT4BQZne-sOOy3x0kS4F0FbgzfOSvA-3rhGFypK4ebUx-jjcfE-e05Wr0_L2cMqERkrQ5JBllWqhpJVWdvkOc2VqkvV1FTGaiCXtJBE1gwYFTSthZKRnkeZom0uWTZGd0ffg7NfA_jAe-0ldJ0wYAfP0-iZVmlFSKROj1TprPcOFD843Qv3zSnhv_nyU778lG9U3B8VEeB7OzgTX_mX_QNT5X-5</recordid><startdate>20201027</startdate><enddate>20201027</enddate><creator>Frey, Nathan C</creator><creator>Akinwande, Deji</creator><creator>Jariwala, Deep</creator><creator>Shenoy, Vivek B</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5291-6131</orcidid><orcidid>https://orcid.org/0000-0002-3570-8768</orcidid></search><sort><creationdate>20201027</creationdate><title>Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing</title><author>Frey, Nathan C ; Akinwande, Deji ; Jariwala, Deep ; Shenoy, Vivek B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-3e338f9e6783db4414ff96fb91c91cbe4c15c0c97e71a129afc8f943e3f1d4c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frey, Nathan C</creatorcontrib><creatorcontrib>Akinwande, Deji</creatorcontrib><creatorcontrib>Jariwala, Deep</creatorcontrib><creatorcontrib>Shenoy, Vivek B</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frey, Nathan C</au><au>Akinwande, Deji</au><au>Jariwala, Deep</au><au>Shenoy, Vivek B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-10-27</date><risdate>2020</risdate><volume>14</volume><issue>10</issue><spage>13406</spage><epage>13417</epage><pages>13406-13417</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Engineered point defects in two-dimensional (2D) materials offer an attractive platform for solid-state devices that exploit tailored optoelectronic, quantum emission, and resistive properties. Naturally occurring defects are also unavoidably important contributors to material properties and performance. The immense variety and complexity of possible defects make it challenging to experimentally control, probe, or understand atomic-scale defect-property relationships. Here, we develop an approach based on deep transfer learning, machine learning, and first-principles calculations to rapidly predict key properties of point defects in 2D materials. We use physics-informed featurization to generate a minimal description of defect structures and present a general picture of defects across materials systems. We identify over one hundred promising, unexplored dopant defect structures in layered metal chalcogenides, hexagonal nitrides, and metal halides. These defects are prime candidates for quantum emission, resistive switching, and neuromorphic computing.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.0c05267</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5291-6131</orcidid><orcidid>https://orcid.org/0000-0002-3570-8768</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2020-10, Vol.14 (10), p.13406-13417 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2441282800 |
source | American Chemical Society Journals |
title | Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A34%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-Enabled%20Design%20of%20Point%20Defects%20in%202D%20Materials%20for%20Quantum%20and%20Neuromorphic%20Information%20Processing&rft.jtitle=ACS%20nano&rft.au=Frey,%20Nathan%20C&rft.date=2020-10-27&rft.volume=14&rft.issue=10&rft.spage=13406&rft.epage=13417&rft.pages=13406-13417&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c05267&rft_dat=%3Cproquest_cross%3E2441282800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441282800&rft_id=info:pmid/&rfr_iscdi=true |